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Abstract

The scalar-plus-vector potential N -body problem is a hurdle to be overcome in many applications. The
Laplace Fast Multipole Method (FMM), originally developed by Greengard and Rohklin, reduces the com-
putational cost of this problem from O(N2) to O(N). However, some parameters must be tuned to navigate
the tradeoff between runtime and accuracy. In this work, we present a fully self-tuning FMM. This requires
fast, accurate error estimates, which are hard to come by. We derive a less conservative error bound than
is typically found in the literature, and use it to dynamically choose the expansion order of each interaction
subject to an error tolerance. We make some minor modifications to self-tuning dual tree traversal as found
in the literature which allow us to predict the optimal leaf size. The cost of scalar-plus-vector Laplace
potential problems is reduced by leveraging the Lamb-Helmholtz decomposition to reduce the number of
expansions needed from 4 to 2. We generalize the self-tuning process to combine multiple source systems
in a single FMM call, and include formulae for obtaining the multipole coefficients of constant vector lines,
surfaces, and volumes in O(1) based on equivalent scalar sources. The effectiveness of the tuning strategy
and the efficiency of the numerical methods are demonstrated on 2 canonical problems, as well as a vortex
particle simulation of an electric VTOL aircraft. Our in-house FMM code is available open-source.

Keywords: Fast multipole method, Automated tuning, Lamb-Helmholtz decomposition, Error constrained,
Regularized bodies, Quadrature to expansion

1. Introduction

The scalar-plus-vector Laplace potential problem arises in many contexts, particularly in electromag-
netism [1], linear elasticity [34], and fluid dynamics [2]. In practice, it reduces to the N -body problem,
because the Laplace Green’s function and/or its derivatives must be either: convolved over sources in order
to solve for discrete boundary element strengths; and/or evaluated at target locations to estimate force,
velocity, or other field quantities. Greengard and Rohklin’s Fast Multipole Method (FMM) [3] reduces
the computational cost of the N -body problem from O(N2) to O(N) and is well-suited for CPU-[10] and
GPU-[26, 27, 28] parallelization, earning its status as one of ten “algorithms of the century” [5].

Bodies of finite volume (e.g. filaments, panels, volumes, or regularized particles) presents additional
challenges, such as obtaining multipole coefficients. Greengard et al. divided panels into a collection of
points for generating multipole expansions. In this approach, the threshold between farfield and nearfield
must be chosen such that the point sources still resemble panels within an error tolerance. Additional effort
was required to correct for panels that “poke” out of their cells [33]. Salloum and Lakkis approximated
regularized vortex particles as point vortices when obtaining their multipole coefficients, and used the tree
depth to limit the error [39]. Gumerov developed recursiveO(1) formulae for integrating multipole coefficients
of constant source filaments, panels, and volumes, as well as constant dipole panels, avoiding the discretization
error of replacing panels with points at negligible computational cost [14]. The challenge remains to account
for bodies that don’t fit in their cells; but this can be remedied by adjusted each cell’s radius to account for
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the finite radius of its bodies [9, 10]. It is worth mentioning that this approach requires the interaction list
of each cell to be chosen dynamically, which most FMM codes do not.

The original FMM uses a rigid interaction stencil to determine which cells receive expansions [3]. Dehnen
developed an adapative O(N) tree walk, called dual tree traversal, which evaluates expansion based on
a multipole acceptance criterion (MAC) based on cell radius and separation distance rather than a rigid
stencil [11, 13]. Yokota reported reduced computational cost by adjusting both the MAC and the expansion
order beyond what is possible by adjusting only the expansion order [12]. The downside is that the multipole
translation operators cannot be precomputed and stored if the interaction list is not known a priori. In this
work, we dynamically build the interaction list, use Gumerov’s analytic multipole coefficients for bodies of
finite volume, and precompute portions of the translation operators to improve efficiency.

Other progress has been made to reduce the cost of FMM. For example, Gumerov et al. showed how
to represent the 3-dimensional Laplace vector potential using 2 expansions (instead of 3) via the Lamb-
Helmholtz decomposition, with analytic expressions of their spatial derivatives, along with the multipole
coefficients for point vortices [6]. In this work, we combine the scalar potential expansion with the first
component of the Lamb-Helmholtz decomposition of the vector potential, requiring only 2 expansions for
both scalar and vector potential fields and their spatial derivatives. We also derive a formula for the multipole
coefficients of non-point constant vortex elements. This allows us to calculate the influence of an arbitrary
collection of different element types (e.g. points, filaments, or panels of monopole, dipole, or vortex sources)
in a single FMM call using 2 expansions.

There is a tradeoff between computational cost and accuracy in FMM which must be tuned. In the
ideal case, we select tuning parameters that minimize computational cost subject to an error tolerance. A
conservative error upper bound based on the MAC was provided by Greengard, which he used to tune the
expansion order [32]. One reason theoretical upper bounds may perform poorly in practice is that there
may or may not be particles at the worst-case location. Dachsel developed a two-stage approach to account
for this, first assuming a uniform particle distribution for tuning, and then probing the particle locations of
each cell to find the recipient of the largest error and adjusting the expansion order accordingly [18]. Pringle
developed a less conservative upper bound which he used to tune the expansion order of each multipole-to-
local transformation, but leaving the MAC constant; he found computational savings compared to a constant
expansion order [19]. Dehnen developed an even less conservative upper bound for gravitational (i.e. source)
bodies to dynamically tune the MAC, but kept the expansion order constant [30]. Yokota and Barba sought
to tune both the MAC and expansion order simultaneously; he reported the asymptotic behavior of both
the error and the computational cost in terms of MAC and expansion order, but found that the coefficients
depend too heavily on hardware and implementation for them to be useful in tuning. Instead, he tuned
them empirically [26].

The leaf size (tree depth) is another tuning parameter. If it is too large (shallow), too many oper-
ations may be left to be performed directly at the leaf level; if it is too small (deep), multipole-to-local
transformations dominate the cost. Dachsel used benchmarks of the multipole-to-local transformation and
direct interactions to determine the optimal tree depth. Combined with the error-control mentioned in the
previous paragraph, he automated FMM tuning subject to an error constraint [25], though changing the
MAC (interaction list) was not considered. Yokota and Barba benchmarked the relative cost of multipole-
to-local transformation, direct evaluation, and multipole evaluation, allowing them to choose the cheaper of
the three, effectively ignoring all cells past the optimal depth. Multipole evaluation provided a slight cost
improvement, and their strategy was effective on CPU, GPU, and hybrid architectures [35]. Salloum and
Lakkis used a priori benchmarks to automatically select the optimal tree depth subject to an error tolerance,
which included both expansion error and regularization error [39].

In this work, we automate the tuning process for all tuning parameters: expansion order, MAC, and leaf
size, subject to a user-defined error constraint, generalized for multi-system problems. First, we describe how
several different systems, including bodies of nonzero radius, can act as sources in a single FMM call. Then,
we derive a less conservative error prediction that is useful for arbitrary Laplace kernels (like filaments and
panels) with or without the Lamb-Helmholtz decomposition. Unlike most upper bound error predictions, it
does not assume that source and target cells are the same size, making it ideal for bodies of nonzero radius
or very sparse systems where cells can be shrunk. We leverage this error prediction to dynamically tune the
expansion order and thereby satisfy the error tolerance. With expansion order and leaf size automatically
tuned and satisfying the error constraint, tuning the MAC reduces to a 1-dimensional problem, which we
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automate. We demonstrate on two canonical problems, as well as aerodynamic simulation of an electric
vertical takeoff and landing passenger aircraft.

2. Algorithm Overview of the Fast Multipole Method

The FMM algorithm achieves O(n) scaling by leveraging four ideas: 1) a single multipole expansion
expresses the influence of a cluster of source bodies; 2) many multipole expansions (converging in the farfield)
can be combined into a single local expansion (converging in the nearfield); 3) multipole and local expansions
can be formed very efficiently using hierarchical clustering; and 4) interactions which are too close to be
evaluated using expansions must be calculated directly. We explain ideas 1-3 in the following sections in a
general way (i.e. not specific to the Laplace potential). Then, we introduce the basis functions used for the
Laplace potential in the rest of the paper.

2.1. Multipole Expansion
A multipole expansion expresses the influence at x⃗ of a cluster of Nb bodies over basis functions about the

multipole expansion center x⃗M . This compression is illustrated in Fig. 1, and is expressed mathematically
as

ϕ(x⃗) =

∞∑
j=0

MjSj(x⃗− x⃗M ) (1)

where Mj are the multipole coefficients, Sj are the basis functions of the expansion, and the expression
converges when x⃗ is farther away from x⃗M than the farthest body in the cluster. These coefficients are
obtained by expanding each body’s influence over the same basis and summing:

ϕ(x⃗) =

Nb∑
i=1

∞∑
j=0

M
(i)
j (x⃗i − x⃗M )Sj(x⃗− x⃗M ) (2)

=

∞∑
j=0

Sj(x⃗− x⃗M )

Nb∑
i=1

M
(i)
j (x⃗i − x⃗M ) (3)

where M (i)
j are the coefficients of body i and Mj =

Nb∑
i=1

M
(i)
j (x⃗i− x⃗M ) are the coefficients of the entire cluster.

Note that the reordering of sums in Eq. 3 is only possible because the basis functions Sj are not a function
of the body locations x⃗i, and the multipole coefficients Mj are not a function of x⃗.

source bodies target

(a) direct evaluation

∗

multipole target

(b) multipole expansion

Figure 1: A multipole expansion compresses the influence of a cluster of source bodies into a single expansion.

Truncating the infinite series after p+1 terms, a multipole expansion allows us to compute the influence
of Nb source bodies over Nt targets in O(max(Nb, Nt)) rather than O(NbNt). If used for the entire N -body
problem whenever targets are far enough away for multipole expansions to converge to an acceptable error
tolerance, it is possible to achieve O(N logN) scaling. To achieve O(N) scaling, we require local expansions.
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2.2. Local Expansion
Local expansions differ from multipole expansions in that they converge when the evaluation point x⃗

is closer to the local expansion center x⃗L than the closest source body. As such, they typically employ a
different basis {Rn(x⃗− x⃗L)}:

ϕ(x⃗) =

∞∑
j=0

LjRj(x⃗− x⃗L) (4)

where Lj are the local expansion coefficients. In practice, coefficients are obtained by transforming the multi-
pole basis {Sj(x⃗− x⃗M )} into the local basis {Rj(x⃗− x⃗L)} using the multipole-to-local (M2L) transformation
TM2L : {Sj(x⃗ − x⃗M )} → {Rj(x⃗ − x⃗L)}. When many multipole expansions are translated to the same local
expansion and summed, we obtain a single local expansion representing the influence of all bodies composing
each multipole expansions. The benefit of local expansions is depicted visually in Fig. 2. They are expressed
mathematically as

ϕ(x⃗) =

NM∑
k=1

∞∑
j=0

TM2L(M
(k)
j )Rj(x⃗− x⃗L) (5)

=

∞∑
j=0

LjRj(x⃗− x⃗L) (6)

where Lj =
NM∑
k=1

TM2L(M
(k)
j ) represents the influence of all NM multipole expansions. In a naive implemen-

tation, all interactions are performed directly. In tree codes, multipole expansions are evaluated directly at
each target, and local expansions are not used. In pure FMM implementations, multipole expansions are
never explicitly evaluated at target locations; rather, they are transformed into local expansions first. In
hybrid FMM-tree codes, each cell interaction uses whichever is cheaper.

∗
∗
∗ ∗

∗

multipole expansions targets

(a) multipole expansions only

∗
∗
∗ ∗

∗ ∗

local expansionmultipole expansions

(b) multipole and local expansions

Figure 2: A local expansion is formed by re-expanding several multipole expansions about the center of a target cluster, thereby
reducing the number of operations.

2.3. Efficient Expansion Formation and Hierarchical Clustering
There is a tradeoff between using many small body clusters vs. fewer large clusters. For multipole

expansions, larger clusters are more efficient as they represent more source bodies; however, smaller clusters
can be evaluated at more locations due to their smaller convergence radius. For local expansions, larger
clusters are more efficient in terms of the number of targets they represent; however, smaller clusters will
be able to combine the influence of more multipole expansions. For both multipole and local expansions,
smaller clusters mean fewer interactions need to be evaluated directly. To navigate this tradeoff, FMM
employs hierarchical clustering, where each cluster consists of a number of smaller child clusters, recursively
down the hierarchy until some stopping criterion is reached. The smallest clusters are called leaves. Having
several levels of cluster sizes to choose from allows us to use both large and small clusters. In this work, we
use adaptive octree clustering.
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FMM requires 3 steps: the upward pass, horizontal pass, and downward pass. In the upward pass,
multipole expansions are formed at each leaf using Eq. 3. Rather than forming multipole expansions at
each level from the source bodies explicitly, existing expansions are translated and summed at their parent
cluster using the multipole-to-multipole transformation TM2M : {Sn(x⃗ − x⃗child)} → {Sn(x⃗ − x⃗parent)}. In
the horizontal pass, they are transformed to local expansions using TM2L at clusters far enough away to
meet a separation criterion, sometimes called the multipole acceptance criterion (MAC). Note that each
parent cluster encodes the influence of all its child clusters; therefore, once a transformation is performed,
there is not need to transform that cluster’s children to the same target (otherwise, interactions would be
double-counted). Finally, beginning at the largest cluster level, local expansions are translated and summed
at all child clusters using the local-to-local transformation TL2L : {Rn(x⃗ − x⃗parent)} → {Rn(x⃗ − x⃗child)}.
At this point, all well-separated interactions are accounted for in the leaf level local expansions, which are
evaluated at their target locations. All other interactions are computed directly.

During the horizontal pass, the set of target clusters that receive a local expansion from a given multipole
expansion form the interaction list. Different FMM implementations use different interaction lists. In this
work, we use an adaptation of Dehnen’s O(N) tree walk [11] because it adapts well to sparse tree structures
and arbitrary cluster configurations. As will be discussed further in Section 3.2, we resize and recenter
clusters, making this an essential feature.

2.4. Laplace Potential
The solid harmonics form a natural basis for the 1/r kernel, and were used in the original Laplace FMM

in 3 dimensions [4]. The FMM implementation of the present work employs the solid harmonics as the
expansion basis, using the normalization of Epton and Dembart [15]. Then, multipole (Eq. 1) and local
expansions (Eq. 4) of order p take the form

ϕ(x⃗) =

p−1∑
n=0

n∑
m=−n

Mm
n S

m
n (x⃗), Sm

n (x⃗) =
(n− |m|)!
i|m|rn+1

P |m|
n (cos θ)eimϕ (7)

ϕ(x⃗) =

p−1∑
n=0

n∑
m=−n

Lm
n R

m
n (x⃗), Rm

n (x⃗) = (−1)n i|m|rn

(n+ |m|)!
P |m|
n (cos θ)eimϕ (8)

where r, θ, and ϕ are the radial, polar, and azimuthal coordinates of x⃗, and Pm
n are the associated Legendre

polynomials. See their paper for the translation operators. In this work, we use Gumerov’s efficient approach
for obtaining the transformation coefficients of the point and shoot algorithm [16]. We also use Gumerov’s
approach for computing derivatives of the potential when evaluating expansions [6]. Due to the complexity
of the algorithm, efficient FMM codes can be hard to come by, and are often taylored to specific problems.
Our efficient, multi-purpose Julia code called FastMultipole1 is open-source.

3. Methods

This section is organized as follows. In Section 3.1, we set the stage for our self-tuning algorithm by
showing how the FMM can generalize to solve multi-system problems simultaneously. In Sections 3.2-3.3,
we describe the different error sources to be considered in the FMM. We derive a low-cost prediction of
multipole-to-local error. Because it is based on the multipole and local coefficients themselves, it can be
used for pure dipoles, unlike traditional upper bounds. We describe our approach to satisfy a user-defined
error tolerance εtol, thereby tuning the expansion order. Then, in Sections 3.4-3.4.2, we describe how we
generalize dual tree traversal to include multiple source systems in a single FMM call, as well as our prediction
of the optimal leaf size. In Section 3.5, we show how choosing the optimal MAC reduces to a 1-dimensional
problem. Finally, since we leverage Gumerov’s Lamb-Helmholtz decomposition of the FMM [6], we show how
to obtain the multipole coefficients of constant vortex filaments, panels, or volumes of arbitrary geometry in
Section 3.6.

1https://github.com/byuflowlab/FastMultipole.jl
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3.1. Generalizing to Multi-System Problems
It is common in engineering applications for several distinct systems of bodies to interact. In electro-

magnetism, filaments representing wires and volumetric conductive bodies interact. In linear elasticity, the
scalar potential represents bulk deformation, and the vector potential represents shear deformation. Or, in
fluid dynamics, vortex volumes, panels, filaments and particles represent vorticity, source elements represent
bodies of finite thickness, and dipole elements represent the effect of lift. In each case, the system induces a
vector field v⃗ in terms of a scalar-plus-vector potential, or

v⃗ = ∇ϕ+∇× ψ⃗ (9)

where v⃗ could be the fluid velocity, electric field, etc. Often, code is developed to calculate the influence of
each set of bodies separately, in which case interactions must be accounted for between each set of elements.
This evolves into a higher-level n-body problem, where we must compute the influence of each system on
every other system. However, we compute all interactions in a single FMM call by superimposing the
multipole coefficients due to each system, thereby accounting for all systems at once.

In problems where the divergence and vector Laplacian vanish, ∇ · v⃗ = 0 and ∇2v⃗ = 0, we can reduce
the dimensionality of ψ⃗ from three dimensions to two under the Lamb-Helmholtz decomposition [21]:

∇× ψ⃗ = ∇φ+∇× (r⃗χ) (10)

Gumerov et al. demonstrated how to modify the FMM translation operators to compute φ and χ rather than
ψ⃗, resulting in computational savings [6]. We combine the Lamb Helmholtz φ potential with our original
scalar potential ϕ, effectively reducing the four dimensional potential of general problems to two:

v⃗ = ∇ϕ+∇φ+∇× (r⃗χ) (11)

= ∇ϕ̃+∇× (r⃗χ) (12)

where ϕ̃ = ϕ+ φ. Now, ϕ̃ represents contributions from both scalar and vector potentials, and χ is required
to fully represent the vector potential.

Calculating the influence of multiple systems in a single FMM call is as simple as superimposing the
expansion coefficients, and then computing direct interactions as usual. It is simple to do, both conceptually
and in terms of implementation. However, we have found no treatment of it in the literature. We emphasize
that this techniques can be applied to other FMM implementations, with or without the Lamb-Helmholtz
decomposition, for scalar and or vector potentials, and regardless of the kernel used.

3.2. Error Prediction
FMM error has 4 known contributors: 1) regularization error, e.g. approximating a Gaussian regularized

kernel as a singular point source in the farfield; 2) multipole expansion truncation error due to the finite
expansion order; 3) local expansion truncation error due to the finite expansion order; and 4) error due to
the translation of a truncated multipole expansion to a local expansion. We share how to deal with 1-3 in
the following sections and neglect 4, which has been shown to be less than 30% of the expansion error for
expansion orders less than or equal to 10, but is harder to predict [20]. Our goal is an order-of-magnitude
accurate error prediction that allows us to automatically tune the expansion order of each multipole-to-local
transformation to satisfy a user-defined absolute error tolerance εtol.

An argument can be made that a relative error tolerance would be preferred. This can be imposed
in two ways–either by predicting error relative to the final target potential, or predicting error relative to
the current contribution as it is calculated. The latter is easier to implement, but could lead to overly
conservative expansion orders. For example, if a multipole expansion would exert a negligible influence at a
target, then a relative error tolerance might require a very high expansion order for nothing. The former case
is desirable, but requires an a priori estimate of the final potential. This can be obtained by a low-accuracy
FMM call, or by remembering the potential at each body from the previous FMM call if they are known to
change slowly. With that in hand, the present method can be used easily to impose a relative error tolerance.
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3.2.1. Regularization Error
Regularization error occurs when bodies’ influence is not represented by the 1/r potential. For example, a

regularization factor might be applied close to singular elements (like point vortices) to eliminate the singular
behavior and improve numerics. If multipole expansions are generated by assuming a true point vortex, or
if the regularized function is not harmonic (and hence cannot be represented in the multipole basis), then
significant error will be experienced inside the regularization region. The same phenomenon occurs for
volumetric or planar sources, whose potential is harmonic only when evaluated outside their volume. For
example, the gravitational potential induced by a spherical planet of constant density is harmonic outside
its radius, but is linear in r inside its radius.

To remedy this, we assign an expansion radius ξi to the i th body equivalent to the distance at which its
potential matches the 1/r potential within the desired error tolerance εtol. This can be expressed as finding
ξ such that

∣∣∣ϕ̃(r)− ϕ(r)∣∣∣ ≤ εtol : r ≥ ξ (13)

where ϕ̃(r) is the regularized influence and ϕ(r) is the singular influence approximated by the FMM. Then, we
generalize the approach by Deng et al. [9] to shrink (or grow) and recenter each cell until it fully encapsulates
all member sources. If bodies have a finite radius (like panels), we set ξi equal to the geometric radius. If
bodies have a regularized kernel, we calculate ξ based on

∣∣∣ϕ̃(r)− ϕ(r)∣∣∣ directly rather than the size of the
panel.

3.2.2. Truncation Error
The scalar potential is expanded in terms of a multipole expansion as

ϕ(r⃗) =

∞∑
n=0

n∑
m=−n

ϕmn X
m
n (r⃗) (14)

where Xm
n are the irregular solid harmonics Sm

n for a multipole expansion and the regular solid harmonics
Rm

n for a local expansion. The error of a p-truncated expansion is then the sum of the truncated terms:

εϕ =

∞∑
n=p

n∑
m=−n

ϕmn X
m
n (r⃗) (15)

≈
p∑

m=−p

ϕmp X
m
p (r⃗) (16)

Due to the oscillatory nature of the spherical harmonics, this error is highly dependent on the evaluation
point, and can vary significantly if the evaluation point is perturbed by even a small amount2. To remove this
sensitivity in favor of an upper bound for a multipole expansion, Dehnen substituted ϕmn with an expression
of the multipole power, leveraging the fact that the norm of spherical harmonic coefficients of the same
degree is invariant under rotation of the coordinate system [30]. We use the same technique as follows.

ConsiderXm
n = Sm

n (multipole expansions). Separating the spherical harmonics from the solid harmonics,
we have

ϕmn S
m
n (r⃗) =

ϕmn S̃
m
n

|r⃗|n+1
Y m
n (r⃗) (17)

2Often in the literature, an upper bound has been obtained by replacing the Legendre polynomial factor of Xm
n with its

upper bound of unity. However, this becomes unnecessarily conservative [30].
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where S̃m
n is a normalizing factor that converts the normalization of Sm

n to the orthonormal normalization
of Y m

n . For our normalization,

S̃m
n =

√
4π(n+ |m|)!(n− |m|)!

(2n+ 1)
(18)

Noting that
n∑

m=−n
ϕmn S̃

m
n has a norm that is invariant under rotation, we define Mn to be rotationally

invariant as

Mn ≡

√√√√ n∑
m=−n

[
ϕmn S̃

m
n

]2
(19)

At this point, we depart from Dehnen’s method. Consider rotating the coordinate system such that the z
axis aligns with the point of highest multipole error located a distance r away. Then, the |m| > 0 terms
vanish, and

εϕ ≲
Mp

S̃0
p

(p)!

rp+1
(20)

BecauseMn is rotationally invariant, we only need to know the radial distance r of the max-error location–
not the angular location, which is difficult to predict. To be conservative, we choose r as the distance from
the multipole expansion center to the closest point in the target cell.

The preceding theory is sufficient for predicting the multipole expansion error, but not the local expansion
error. It is the authors’ understanding that Dehnen assumed the two to be equal, which has been shown to
be a good assumption when multipole and local cells are the same size [19]. This is not guaranteed in our
implementation, however, as will be discussed in Section 3.4. So additional treatment is needed to account
for local expansion error, as follows.

Consider a vector ϕmn of coefficients of Rm
n with

(Lϕ)
m
n R

m
n (r⃗) = ϕmn R̃

m
n Y

m
n (r⃗)rn (21)

Reconstructing the normalization like we did before, we have:

i|m|(−1)m
√

(2n+ 1)(n− |m|)!
4π(n+ |m|)!

R̃m
n = (−1)n i|m|

(n+ |m|)!
(22)

R̃m
n =

√
4π

(2n+ 1)(n+ |m|)!(n− |m|)!
(23)

which implies the rotation-invariant norm:

Ln =

√√√√ n∑
m=−n

[
ϕmn R̃

m
n

]2
(24)

Then, rotating into a z-aligned coordinate system with the point of maximum error such that |m| > 0 terms
vanish, we arrive at the following for a local expansion:

εϕ ≲
Lp

R̃0
p

rp

(p)!
(25)
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We can conservatively choose r as the distance from the local expansion center to the farthest corner of the
cell.

In practice, we can precompute and store R̃m
n and S̃m

n once for the entire simulation. We note that Mn

and Ln each require O(n) operations to calculate. The largest cost of this error estimate is computing the
multipole and local coefficients for n = p.

It is often more helpful to control the error in the induced vector field v⃗ from Eq. 9 rather than the
potential itself. Upper bound estimates can be derived as

|ε⃗R| ≲
√
3
L(ϕ̃)
p

R̃0
p

rp−1

(p− 1)!
+
√
3
L(χ)
p

R̃0
p

rp

(p)!
(26)

|ε⃗S | ≲
√
3
Mp−1

S̃0
p−1

(p)!

rp+1
+
√
3
M(χ)

p

S̃0
p

p!

rp+1
(27)

where |ε⃗R| is the magnitude of the vector error experienced by a local expansion, and |ε⃗S | is for a multipole
expansion. The derivation can be found in Appendix A.

3.3. Dynamic Expansion Order
To efficiently constrain the error of the FMM, we seek the smallest expansion order such that the error

tolerance is satisfied according to the error prediction of the previous section. The upward and downward
passes do not introduce significant error [19], so we focus on the horizontal pass, where multipole expansions
are transformed into local expansions and accumulated at target cells. We adopt the “point-and-shoot”
approach for efficient transformation of multipole and local coefficients developed by White and Head-
Gordon. As depicted in Fig. 3, we rotate the coordinate system of a multipole expansion such that the z
axis points to the desired local expansion center. This is because z axis translation is more efficient than
an arbitrary translation vector, requiring O(p3) operations for the multipole-to-local transformation instead
of O(p4). After performing the z-axis transformation, we back-rotate the coordinate system to its original
orientation. [38]

multipole
expansion

expansion
order p

rotate coordinate system

z-axis transform
to local expansion

back-rotate
coordinate system

local
expansion

Figure 3: Point-shoot-rotate algorithm for multipole-to-local transformation.

First, a max expansion order pmax is selected for the upward pass. This will represent the largest possible
expansion order we can perform later. In the horizontal pass, we calculate the coefficients ϕ̃mn and χm

n of
a single degree n at a time, and stop when the error tolerance is reached or we reach n = pmax, as shown
in Fig. 4. This is straightforward for rotating the multipole coefficients, as each rotation requires only the
coefficients of the same degree n. For the z-axis transformation, however, all coefficients of the same order
m are required. We still calculate them one n at a time, but note that after the error tolerance is satisfied,
each coefficient ϕmn will need to be updated by coefficients of the same m of degree greater than n. With that
in mind, we perform a z-axis transformation, and then check the error predicton. If it is not satisfied, we
increment n and iterate until we reach n = pmax. If it is satisfied, we choose the expansion order p← n− 1,
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multipole
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set expansion order

no

yes

no

Figure 4: Error-constrained dynamic expansion order algorithm.

and proceed to correct coefficients with n < p. Since the z axis transformation is a small portion of the cost,
we simply repeat it once the p is known. Finally, we back-rotate the coordinate system.

We point out that the method calculates multipole coefficients of order n to predict the error behavior
for coefficients of order n− 1. In practice, it is poosible to use all calculated coefficients by using all order n
coefficients to increase our accuracy for a negligible increase in cost. The only extra cost is using the rotation
matrices (which we have already calculated) to back-rotate the local coefficients of order n.

3.4. Auto-tuning the Leaf Size with Dual Tree Traversal
In dual tree traversal, a multipole acceptance criterion (MAC) determines a distance beyond which

expansions are allowed. There are several definitions of the MAC in the literature, but we use the one
developed by Warren and Salmon [10], as used by Yokota and Barba [12] and Dehnen [30]. That is, given
a source cell with radius ρS and a target cell with radius ρT , separated by a distance d, we accept the
expansion if

MAC >
ρS + ρT

d
(28)

Beginning at the root of the octree, expansions may be used between cells that satisfy the MAC. If two
cells do not satisfy the MAC, one of them is subdivided into octants and the method recurses until the
number of bodies inside a branch is less than a pre-determined minimum leaf size. Unlike the traditionally
rigid interaction list, this approach does not require consistent symmetry in the size and relative location of
clusters. This is ideal not only for non-uniform body distributions, but also for bodies of nonzero radius, in
which case we resize and recenter the clusters. The auto-tuning mechanism functions as follows. If the MAC
is satisfied, the cheapest of the following occurs:

10



1. the expansion is transformed to a local expansion at the target cell
2. interactions are computed directly between source and target bodies
3. the expansion is evaluated at the target bodies within the target cell
4. a local expansion is formed from the source bodies at the target cell

Our implementation is depicted in Fig. 5 where CD is the cost of direct calculation between two particular
cells, CM2L is the cost of the multipole-to-local transformation, and Ntarget and Nsource are the numbers of
bodies in the target and source cell, respectively. Our approach has a few minor differences. First, Yokota
and Barba showed that bullet 3 is rarely preferred, and Dehnen reported that 4 is rarely preferred, so we
omit these from our implementation. However, our approach is easily amenable to including these if desired.
The main difference is the use of the threshold leaf size ŝ(i) to determine which operation is the cheapest,
as will be discussed subsequently. In short, this allows the optimal leaf size to be known a priori. Another
difference is the choice of which cell to subdivide. Traditionally, this defaults to the cell with the larger
radius; in our implementation, we choose the cell that contains more bodies, regardless of its physical size.
This choice is likely to produce a more balanced tree structure. We also point out that our error prediction
is uniquely qualified for this approach because it maintains accuracy for different source/target cell sizes,
unlike other methods known to the authors [19, 30].

threshold
leaf sizes ŝ(i)source branch target branch

CD < CM2L
OR

both are leaves
direct calculation

MAC satisfied use expansion

source is a leaf
OR

Ntarget > Nsource

loop over target’s
child branches

loop over source’s
child branches

yes

no

no

yes

no

yes

Figure 5: Our implementation of self-tuning dual tree traversal. CD is the cost of direct calculation between two particular
cells, CM2L is the cost of the multipole-to-local transformation, and Ntarget and Nsource are the numbers of bodies in the target
and source cell, respectively.

If the expansion order is known, estimating the cost of the expansion operators is straightforward. In
our implementation, however, we do not know the expansion order a priori (see Section 3.3). So, we run the
FMM to obtain average benchmarks. This could lead to sub-optimal performance if the chosen expansion
orders have a high variance, but it performs well in practice, as demonstrated in Section 4. An alternative
approach would be to constrain the error based on the MAC instead, keeping the expansion order fixed as
demonstrated by Dehnen [30].
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3.4.1. Optimal Leaf Size for a priori Tree Creation
The first step in an FMM call is to create the tree. Then, during tree traversal, we push the indices of

branches to receive direct or multipole-to-local transformations to two vectors, respectively. After completing
the tree traversal, direct and multipole-to-local transformations are performed using for loops rather than
recursion, which is typically more efficient. We predict the optimal leaf size s as follows.

We define a threshold leaf size ŝ as the number of bodies at which the cost of a multipole expansion
equals that of a direct evaluation, or

ŝ =

√
Cexp

CD
(29)

where CD is the cost of a single direct interaction, and Cexp is the average cost of an expansion. We estimate
the former by benchmarking during an FMM call. We could estimate the latter by benchmarking the
horizontal pass and dividing by the number of multipole-to-local transformations; however, this ignores the
overhead cost required to form the octrees, the upward pass, and the downward pass. We find more optimal
tuning parameters when we sum benchmarks for all of these and then divide by the number of multipole-
to-local transformations. The downside is that the benchmarks are dependent on the tuning parameters,
making this an iterative process in the worst case. This is a non-issue, however, when the FMM is used for
a time evolution [8], or during an iterative solution process [36], in which the distribution of bodies changes
only slightly from timestep to timestep. In either case, we can borrow benchmarks with parameters that are
close to the optimum during the previous timestep or iteration for free. In one-off applications, or for the
first timestep, we often find good convergence in just three FMM calls: one to determine the max expansion
order needed for the upward and downward passes, one to determine the leaf size, and one to ensure the
expansion order still satisfies εtol after changing the leaf size.

When considering whether or not to use an expansion, we consider the number of bodies in the source
cell NS and the number of bodies in the target cell NT . If the number of bodies is small, it will be cheaper
to evaluate interactions directly. If the number of bodies is large, it will be cheaper to use the expansion.
The break-even point occurs when

NSNT

ŝ2
= 1 (30)

If the preceding expression is less than unity, direct interactions are preferred. Otherwise, the expansion is
used (see Fig. 5).

The ideal leaf size is just small enough that the algorithm never runs out of branches. Because we always
subdivide the branch containing more bodies, it is reasonable to assume that NT ≥ NS . Relaxing this
assumption by a small amount, we choose the source and target tree leaf sizes sS = sT = ŝ/2.

3.4.2. Optimal Leaf Size for Multiple Source Systems
We desire to generalize the approach of the previous section for multiple source systems in a simultaneous

FMM solve (see Section 3.1). Because all source systems contribute to the same expansions, a single source
tree is constructed containing all source systems. We assign variables a superscript index (i) referring to the
ith source system, and define ŝ(i) for each source system using the system of equalities

Cexp =
(
ŝ(i)
)2
C

(i)
D (31)

where C(i)
D is the cost of a direct evaluation of the ith source system on a single target. As before, C(i)

D and
Cexp can be obtained by benchmarking an FMM call.

We generalize the break-even point of Eq. 30 as
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Cexp = NT

∑
i

N
(i)
S C

(i)
D (32)

= NT

∑
i

N
(i)
S

Cexp

(ŝ(i))2
(33)

NT

∑
i

N
(i)
S

(ŝ(i))2
= 1 (34)

If the expression is less than unity, direct interactions are preferred; otherwise, expansions are used.
When forming the tree, we base the tree depth on the cost break-even point of Eq. 34. It is reasonable to

assume that NT is never smaller than
∑
i

N
(i)
S because we choose to subdivide whichever cell contains more

bodies in the tree walk, as discussed in Section 3.4. Then, it is conservative to stop subdividing the source
tree when3

min
i
(ŝ(i))

∑
i

N
(i)
S

(ŝ(i))2
≤ 1 (35)

By a similar logic, we can stop subdividing the target tree when

NS ≤ min
i
ŝ(i) (36)

Note that if only one source system is used, the stopping criterion of Eq. 35 reduces to the traditional leaf
size definition:

NS ≤ ŝ (37)

3.5. Choosing the Optimal MAC
Now that we have automated the choice of expansion order, satisfied an error tolerance, and automated

the choice of optimal leaf size, the only parameter remainding is the MAC. Dehnen suggests that a MAC
of 0.4 is the theoretical optimum [30], but we have found that this is not always true in practice (see
Section 4.1.5). Fortunately, this is a simple 1-dimensional problem which we solve easily by testing a range
of reasonable candidate values and choosing the one that results in the lowest computational cost. The
suggested procedure in Section 3.4.1 costs roughly 3 FMM calls per candidate MAC. We suggest performing
this once for a typical timestep or iteration and reusing the same MAC throughout the simulation.

3.6. Multipole Coefficients for the Lamb-Helmholtz Decomposition
In order to use FMM under the Lamb-Helmholtz decomposition, we require multipole coefficients in

terms of ϕ and χ. Gumerov derived the multipole coefficients for point vortices [6]. We show how to extend
his derivation to constant vortex filaments, panels, and volumes.

Gumerov showed that the multipole coefficients (Mϕ)
m
n and (Mχ)

m
n for a point vortex of strength ω⃗ at

location x⃗ are

ϕmn (r⃗s) =
1

n+ 1

[
(ωx − iωy)

n−m+ 1

2
Rm−1

n (−x⃗)− (ωx + iωy)
n+m+ 1

2
Rm+1

n (−x⃗)− iωzmR
m
n (−x⃗)

]
(38)

χm
n = − 1

n

[
1

2
(ωy + iωx)R

m−1
n−1 (−x⃗)−

1

2
(ωy − iωx)R

m+1
n−1 (−x⃗)− ωzR

m
n−1(−x⃗)

]
, χ0

0 = 0 (39)

3In practice, we relax the assumption that NT ≥
∑
i
N

(i)
S by changing the RHS from 1 to 0.5.
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We obtain the multipole coefficients by integrating over the element:

u⃗(r⃗t) =

∫
∇× ω⃗

|r⃗t − r⃗s|
dS (40)

=

∞∑
n=0

n∑
m=−n

g̃mn ∇× [ω⃗Sm
n (r⃗t)] (41)

where g̃mn =
∫
Rm

n (−x⃗)dS are the multipole coefficients of a constant source point, filament, panel, or volume
sharing the same geometry (e.g., scalar potential only). Then, using the same process as Gumerov [6] to
obtain Eqs. 38-39, we arrive at:

ϕmn (r⃗s) =
1

n+ 1

[
(ωx − iωy)

n−m+ 1

2
g̃m−1
n − (ωx + iωy)

n+m+ 1

2
g̃m+1
n − iωzmg̃

m
n

]
(42)

χm
n (r⃗s) = −

1

n

[
1

2
(ωy + iωx)g̃

m−1
n−1 −

1

2
(ωy − iωx)g̃

m+1
n−1 − ωz g̃

m
n−1

]
, χ0

0 = 0 (43)

which are the multipole coefficients for a constant vortex filament, panel, or volume. To calculate g̃mn , we
use the recursive O(1) procedure published by Gumerov [14].

4. Results

4.1. Point Source and Point Vortex Example
To test the methods, we first consider two canonical problems. For the first problem, we randomly place

point sources according to a uniform distribution in the unit cube with strengths sampled from a uniform
distribution between 0 and 1. Then, we normalize the strengths such that the mean gradient ∇ϕ is unity.
The induced potential of a point source of strength m located at r⃗ can be expressed as

ϕ(r⃗t) =
m

|r⃗t − r⃗|
(44)

For the second problem, we randomly place point vortices in the unit cube with x, y, and z components of
their vortex strength randomly sampled from a uniform distribution between -1 and 1. Then, we normalize
the vortex strengths such that the mean curl magnitude |∇×ψ| is unity. The influence can be expressed as

ψ(r⃗t) =
ω⃗(r⃗t − r⃗)
4π|r⃗t − r⃗|2

(45)

∇× ψ⃗(r⃗t) =
ω⃗ × (r⃗t − r⃗)
4π|r⃗t − r⃗|3

(46)

Note that because neither point sources nor point vortices are regularized nor do they occupy finite
volume, so we set the expansion radius (described in Section 3.2.1) ξ = 0 and consider only the truncation
error.

4.1.1. Verification of O(N) Scaling
To verify that our FMM implementation works properly, we benchmark the FMM on a single thread at

a series of system sizes for the point source and point vortex systems, respectively. The expansion order is
fixed to p = 4, and the leaf size is fixed at s = 50. We then compute interactions directly for comparison and
plot the results in Fig. 6. Based on the slope of the log-log plots, we verify that for large enough problems,
the FMM cost scales as O(N) and the direct interactions scale as O(N2). We also note that for very small
problems, the FMM scaling more closely resembles O(N2). This is likely because most leaf level branches
are too close for expansions at this leaf size, meaning direct interactions dominate the cost. The cross-over
point where the direct cost exceeds the FMM cost occurs at ∼ 2000 point sources, or ∼ 250 point vortices.
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We also note that the cost of the direct vortex interactions is roughly 3 times that of the direct source
interactions. This makes sense because the vortices induce a 3-dimensional potential, whereas the sources
induce a 1-dimensional potential. The difference in cost when running the FMM, however, is only 10-15%
higher. We attribute this to the cost of calculating the rotation matrices, which is the dominant cost, and
can be reused for both dimensions of the Lamb-Helmholtz potential.
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Figure 6: O(N) scaling of the FMM demonstrated.

4.1.2. Combined Scalar-plus-Vector Potential Verification
To verify that our method of combining scalar and vector potentials under two expansions is convergent

(see Section 3.1), we calculate the induced vector field with FMM and compare it to that obtained directly
(e.g. without FMM). We define the vector error εmax here and throughout Section 4 as

εmax = argmax
i
|v⃗i − v̂i|2 (47)

where v⃗i is predicted directly, v̂i is predicted with the FMM, and the subscript i denotes the i th body.
In Fig. 7a, we show that the combined scalar-plus-vector error converges with increased expansion order.

Note that we fix the leaf size at 50 and the MAC at 0.5. The error seems to converge faster when expansions
are performed separately, but this is likely a side-effect of keeping the leaf size constant when combining the
FMM calls. A deeper tree is created for the combined system when the leaf size is kept constant. Then, a
higher percentage of interactions are handled by expansions, introducing more truncation error. Since the
bodies are more densely arranged in the combined system, the same leaf size results in smaller leaf-level cells.
This means that expansions are used for a larger fraction of the computation, leading to larger error.

The cost of computing these interactions separately is compared to the cost of performing them together
in Fig. 7b. We observe a roughly 25% decrease in cost due to combining the expansions. It has been theorized
that for a well-tuned FMM, the cost of expansions is roughly half the overall cost, with the other half due
to direct interactions. For roughly equal-sized systems, the cost of computing interactions separately is 2
FMM calls of roughly equal cost. Since the same direct interactions must be performed in either case, but
we can combine many of the multipole-to-local transformations, we would predict a cost of 1.5 FMM calls,
which matches the 25% savings we observe.

4.1.3. Expansion Error
To verify the error prediction derived in Section 3.2, we consider the source system and vortex system

separately. During the horizontal pass of an FMM call, we use the error estimate from Section 3.2 to predict
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Figure 7: Simultaneous computation of the scalar-plus-vector potential of superimposed point sources and point vortices. Leaf
size and MAC are held constant at 50 and 0.5, respectively.

εmax for each multipole-to-local transformation. First, we evaluate the local expansion at all member bodies
in the target cell. Then, we calculate the influence at the same locations using direct interactions due to
the member bodies of the source cell, and calculate the error. We store the largest error εmax for each
multipole-to-local transformation. In Fig. 8, we plot the ratio of εmax to the predicted upper-bound ε̂max
over various expansion orders for the source system and vortex system, respectively. An upper tail of 1
indicates a perfect upper bound prediction, which we observe consistently for the source system. The vortex
system appears to under-predict by a factor of 2 or so. We attribute the long lower tails to fluctuations in
the error as a function of the polar angle, caused by oscillations in the Legendre polynomials composing our
basis functions. The median and lower tails tend to drop as the expansion order is increased, indicating that
the probability of realizing the error upper-bound decreases as the expansion order increases. This makes
sense, since the Legendre polynomial frequency increases with the expansion order, making it less likely to
probe near a maximum value. Note that we fix the leaf size at 50 and the MAC at 0.5.
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(a) point sources
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Figure 8: Accuracy of the error prediction method of Section 3.2 at all multipole-to-local interactions of a single FMM call at
various expansion orders. Note that an upper tail at 1 indicates a perfect upper bound prediction. Leaf size and MAC are fixed
at 50 and 0.5, respectively.

16



4.1.4. Dynamic Expansion Order
To test the dynamic expansion order selection, we run the FMM over εtol ∈ [10−9, 10−1] with a leaf size

of 50 and MAC of 0.5. We also compute the interactions directly (without FMM) and use them to calculate
the maximum absolute velocity error εmax. We plot the distribution of εmax for each tolerance for the source
and vortex systems in Figs. 9a and 9b, respectively. The dotted line is placed at y = x to represent the error
ceiling; a perfect error prediction would result in upper tails at, but not exceeding, this line. In the point
source system, the εmax is conservatively constrained for εtol < 10−4. Above that, the error rises to its worst
case of a factor of 3 at εtol = 10−2.5. In the vortex system, εmax is constrained within a factor of between
1 and 3 for εtol < 10−4. In that sense, the algorithm is less conservative for the vortex system, consistent
with the behavior seen in Figs. 8a and 8b. Like the source system, the vortex system also experiences
its worst constraint violation near εtol = 10−2.5. We hypothesize this to be related to additive error from
several multipole expansions transforming to the same local expansion, which we don’t account for in our
method. Since the spherical harmonics of higher degree experience higher frequency oscillations, it makes
sense that the error of incoming expansions would tend to cancel at higher expansion orders; conversely at
lower expansion orders, they would be more likely to aggregate.
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(b) point vortices

Figure 9: Distribution of εmax after using the dynamic expansion order from Section 3.3 over a range of εtol. An upper tails or
1 indicates the error tolerance was imposed perfectly. The leaf size and MAC are set to 50 and 0.5, respectively.

Ideally, constraining the error should not result in additional computational cost. To measure the effi-
ciency of the algorithm, we run the FMM on the same situation as in Fig. 9, but fixing the expansion order.
Then, measure εmax for each expansion order, and run the FMM again using the dynamic expansion order to
constrain the error. For maximum efficiency, we use the higher expansion order p← n rather than p← n−1
discussed in Section 3.3. We compare the computational cost vs. εmax in Fig. 10. It is worth noting that the
dynamic expansion order is never more than 5% slower than a fixed expansion order, and is always faster for
tolerances tighter than 10−5. The corresponding reduction in cost is more significant as εtol decreases. This
makes sense because the cost of the multipole-to-local transformation scales as O(p3), translating to greater
savings when higher expansion orders are used.

4.1.5. Optimal Leaf Size and MAC
To verify the optimal leaf size and MAC prediction of Sections 3.4-3.4.2 and 3.5, we first perform a

brute-force parameter space exploration to get a sense for what the optimal parameters should be. Then, we
compare our auto-tuned parameters to a manual parameter optimization. For the manual optimization, we
start at the auto-tuned parameters, and perturb the leaf size and MAC to see if any neighboring parameters
result in a lower cost. If they do, we accept that point and repeat until we find a local minimum.
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Figure 10: Reduction in cost due to a dynamically selected expansion order compared to keeping it constant. The leaf size and
MAC are set to 50 and 0.5, respectively.

In Figs. 11a-11b, we show the time cost for various leaf size and MAC parameters for the point source and
point vortex systems, respectively. The dynamic expansion order was used with εtol = 10−6 and pmax chosen
as the largest requested expansion order, and white space indicates that εtol could not be satisfied for p ≤ 36.
The yellow star indicates the auto-tuned parameters. We note how in some cases, a very small change in one
of the parameters could result in significantly increased computational cost. It is also worth noting that the
optimal parameters are very close to violating the error constraint, highlighting the importance of a good
error prediction.
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Figure 11: Effect of leaf size and MAC on FMM cost with εtol = 10−6. The yellow star indicates the auto-tuned parameters,
and white space indicates εtol could not be satisfied for pmax ≤ 36.

In Tables 1 and 2, we compare the auto-tuned parameters with the result of a manual grid search for the
point source and vortex point systems, respectively. When interpreting this data, it is worth considering the
discrete relationship of both leaf size and MAC on the performance of uniformly distributed bodies. Because
we divide each cell by a factor of 8 at a time, there could be a range of leaf sizes that result in the same
tree, and therefore the same computational cost. Similarly, there are a range of MAC values that lead to
the same interaction list. With that in mind, expansion order and resulting computational cost are better
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comparison metrics. Expansion orders match within 1, and computational costs match within 4% and 7%
for the point source and point vortex problems, respectively.

Table 1: Auto-tuned parameters with εtol = 10−6 for the point source system compared to optimal parameters obtained by
manual grid search.

leaf size MAC expansion order cost (s)

auto-tuned 66 0.6 15 1.21
optimal 60 0.575 14 1.17

Table 2: Auto-tuned parameters with εtol = 10−6 for the point vortex system compared to optimal parameters obtained by
manual grid search.

leaf size MAC expansion order cost (s)

auto-tuned 44 0.6 18 2.50
optimal 55 0.6 17 2.35

4.2. Passenger eVTOL Aircraft Example
As a real-world engineering example, we model the flight of the Joby S4 passenger eVTOL aircraft. We

take geometry from the OpenVSP Airshow4 and generate a CFD surface mesh using OpenVSP5. We model
wings and fuselage using 42,618 uniform source-plus-normal doublet panels in FLOWPanel6. Note that the
potential induced by a uniform source panel can be expressed by

ϕsource(r⃗t) =
σ

4π

∫
dS

|r⃗t − r⃗|
(48)

where σ is the source strength, and r⃗t is the evaluation point. Likewise for a uniform normal double panel,

ϕdoublet(r⃗t) =
µ

4π
n̂ · ∇

∫
dS

|r⃗t − r⃗|
(49)

where µ is the doublet strength and n̂ is the unit normal vector to the surface.
Since panels have a nonzero radius, care must be taken to ensure that panels don’t “poke” outside their

cells. We treat the panel centroid as its position in the FMM, and assign it a radius equal to distance from
the centroid to the farthest vertex. Then, we shrink/grow and recenter cells such that panels are completely
contained before computing the interaction list, as discussed in Section 3.2.1.

4.2.1. Regularized Vortex Filament Rotors and Kutta Condition
Rotors are modeled using the actuator line model in FLOWUnsteady [22], and are converted into 702

vortex filaments in this example. We desire to regularize the induced velocity near the filament while exactly
matching the singular kernel elsewhere to make the FMM error convergent. So, we regularize the induced
velocity of vortex filaments as

v⃗(r⃗t) =
Γ (r⃗t − r⃗1)× (r⃗t − r⃗2)

fσ (|x⃗r − x⃗1||x⃗r − x⃗2|+ (x⃗r − x⃗1) · (x⃗r − x⃗2))

(
1

fσ (|x⃗r − x⃗1|)
+

1

fσ (|x⃗r − x⃗2|)

)
(50)

4https://airshow.openvsp.org/vsp/LtyRrSrYXRhQlDkYwPDX
5https://openvsp.org
6https://github.com/byuflowlab/FLOWPanel.jl
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where Γ is the vortex strength, x⃗1 and x⃗2 are the endpoints of the vortex, and the regularization function
fσ is defined as

fσ(r) =

{
r + (r − σ)2, r < σ

r otherwise
(51)

where σ is the filament core radius. Vortex filaments are also used to enforce the Kutta condition at the
trailing edge of wings, with strengths Γ equal to the difference between trailing edge dipole panel strengths
such that the trailing edge vorticity vanishes.

Since filaments have both a finite radius and a regularized kernel, we set their radius ξ as the sum of the
half-length and the core radius σ. Note that the regularized velocity kernel of Eq. 50 matches the singular
kernel exactly when probing at a distance greater than σ from the closest point on the filament. This will
guarantee that no regularization error will exist if multipole expansions are used farther than σ from the
filament.

4.2.2. Regularized Vortex Particle Wake
Wakes are modeled within FLOWUnsteady using vortex particles with the Gaussian regularization se-

lected, meaning their induced velocity is Eq. 46 multiplied by a regularization function qσ(r⃗t), with the
regularization function equal to

qσ(r⃗t) = erf
(
|r⃗t − r⃗|
σ
√
2

)
−
√

2

π

|r⃗t − r⃗|
σ

e−|r⃗t−r⃗|2/(2σ2) (52)

where σ is the particle smoothing radius. Vortex particles themselves are a Lagrangian discretization of the
incompressible viscous Navier-Stokes equations using Alvarez and Ning’s more stable reformulation [23] as
implemented in FLOWVPM7. We use 105,410 vortex particles in this example.

We desire to control the regularization error of vortex particles in the FMM. The expansions used in
the FMM assume no regularization (a pure 1/r kernel); for proper error control, this discrepancy must be
accounted for in the FMM. As discussed in Section 3.2.1, we define a radius ρ for each particle that will be
used to adjust the cell radius. It is defined such that the regularized velocity ˜⃗v differs from the non-regularized
velocity v⃗ by less then the error tolerance εtol when evaluated at |r⃗t − r⃗| ≥ ρ:

εtol ≥
∣∣∣v⃗ − ˜⃗v

∣∣∣ (53)

≥

∣∣∣∣∣ ω⃗ × (r⃗t − r⃗)
4π|r⃗t − r⃗|3

(
1− erf

(
|r⃗t − r⃗|
σ
√
2

)
+

√
2

π

|r⃗t − r⃗|
σ

e−(|r⃗t−r⃗|)2/(2σ2)

)∣∣∣∣∣ (54)

=
ωρ

4πρ3

(
1− erf

(
ρ

σ
√
2

)
+

√
2

π

ρ

σ
e−ρ2/(2σ2)

)
(55)

0 =
4πσ2εtol

ω

( ρ
σ

)2
+ erf

(
1√
2

ρ

σ

)
−
√

2

π

ρ

σ
e−(ρ/σ)2/2 − 1 (56)

where we go from Eq. 54 to Eq. 55 by noting max
r⃗t

[ω⃗ × (r⃗t − r⃗)] = ωρ. Eq. 56 is a 1-dimensional root finding

problem in ρ/σ with the solution bounding by 0 on the left. On the right, it is bounded by replacing the
erf term with its minimum value of 0, and the exponential factor e−(ρ/σ)2/2 with 1 and solving the resulting
quadratic. The resulting right bound is

ρ

σ
=

ω

8πεtolσ

(√
2

π
+

√
2

πσ2
+ 16

πεtol
ω

)
(57)

7https://github.com/byuflowlab/FLOWVPM.jl.git
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which can be solved efficiently for ρ using a bracketing method like Brent’s method. ρ can then be used to
adjust the cell radius to constrain the regularization to be less than εtol.

4.2.3. Timestepping Procedure
Each timestep of the aircraft simulation can be divided into 3 steps. First, the influence of the wake on

itself and the aircraft is evaluated (wake-on-all). Second, the strengths of panels and filaments composing
the aircraft are computed based on the wake influence. If the number of panels is large, an iterative solution
method where FMM approximates the matrix-vector product without ever forming the interaction matrix
may be used (panels-on-panels). Third, the influence of panels and filaments acting on themselves and the
wake (aircraft-on-all) is calculated before stepping forward in time. The full aircraft and wake is visualized
in Fig. 12, with individual components shown in Fig. 13.

Figure 12: Visualization of the fully-assembled Joby aircraft.

(a) vortex particle wake (b) vortex filament rotors
and wing trailing edge

(c) constant source panels (d) constant normal dipole
panels

Figure 13: Visualization of each component of the Joby aircraft.

4.2.4. Combined Scalar-plus-Vector Potential Verification
We have already verified the combined scalar-plus-vector potential method in Section 4.1.2. We have

not, however, verified our approach to control the error of regularized or nonzero-radius bodies discussed in
Section 3.2. We demonstrate error convergence in Fig. 14a for each of the three interactions discussed in
the previous section: wake-on-all, panels-on-panels, and aircraft-on-all. Note that the aircraft-on-all error
converges slightly slower than the panels-on-panels error. This makes sense because the aircraft consists of
both panels and vortex filaments.

In Fig. 14b, we compare the cost of performing the aircraft-on-all interaction one system at a time
compared to combining the expansions. In this case, the costs are identical within a few percent for a given
max error, indicating the cost benefit from combining expansions we saw for point sources and point vortices
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(a) The maximum absolute velocity error converges for regular-
ized vortex particles (wake-on-all), regularized bodies of non-
zero radius (panels-on-panels), and simultaneous evaluation of
regularized bodies of non-zero radius (aircraft-on-all).
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(b) Combining the expansions of aircraft-on-all into a single
FMM call is only slightly faster than calculating interactions
individually.

Figure 14: Cost comparison of the vehicle-on-all interaction in a single multi-system FMM call vs. two separate FMM calls.

in Fig. 7b doesn’t always hold. This makes sense, considering that we use roughly 50 times more panels than
filaments. Because the cost of panel interactions is already much larger than the cost of filament interactions,
combining the expansions doesn’t help much.

4.2.5. Error Prediction Verification
Now, we seek to verify the error prediction for panels and filaments. In Fig. 15, we report statistics

for ε̂max/εmax for the wake-on-all, panels-on-panels, and aircraft-on-all interactions, which we generate by
randomly sampling 100,000 multipole-to-local interactions. As seen in the figure, the method successfully
predicts the upper bound within a factor of about 2 across the board. Note that all absolute values less than
10−12 are set to 10−12 before calculating statistics to avoid reporting discrepancies due to machine precision.

2 6 10 14
0

1

2

expansion order

ε̂max
εmax

(a) wake-on-all

2 6 10 14
0

1

2

expansion order

ε̂max
εmax

(b) panels-on-panels

2 6 10 14
0

1

2

expansion order

ε̂max
εmax

(c) aircraft-on-all

Figure 15: Accuracy of the error prediction from Section 3.2.2 at all multipole-to-local interactions of a single FMM call at
various expansion orders. Note that an upper tail at 1 indicates a perfect upper bound prediction. Leaf size is fixed at 10 for
the particle field and panels, and at 35 for filaments. MAC is fixed at 0.4.
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4.2.6. Dynamic Expansion Order
The accuracy of the dynamic expansion order selection for all three interactions is plotted in red in Fig. 16,

and can be categorized into two regimes. The first regime occurs at the finest tolerances. Here, the upper
tail of the observed error is within a factor between 5 and 20 of the tolerance. At a certain tolerance, we
cross into the second regime where this factor begins to grow. For the wake-on-all interaction, the tolerance
is exceeded by a factor of 30 at a tolerance of 10−5. For panels-on-panels and aircraft-on-all, this doesn’t
occur until a tolerance of 10−2. Interestingly, these both correspond to an expansion order of about 9 in
Fig. 14a.

In the first regime, we attribute the factor of error to several source cells accumulating at a single target
cell. Since the error of a local expansion tends to be largest at the 8 corners of the cell, the error due to the
8 source cells nearest the corners of the target could accumulate. Multiplying 8 by the factor of 2 observed
in Fig. 15 results in a factor of 16, which matches our observations.

In the second regime, we attribute the additional factor of error to approximating the error by just one
term in the infinite series of Eq. 15. For coarser tolerances, and therefore lower expansion orders, it is more
likely that the n = p+1 term in Eq. 15 could be larger than the n = p term, which is the only one we used.
In other words, it is plausible for a configuration of bodies to have a large quadrapole moment (i.e., n = 2)
while having a small dipole moment (n = 1). If we relied on the dipole moment to predict the error, we
would underpredict the error. However, this is less likely to happen for higher order moments, which is likely
the reason for the two regimes observed. This would also explain why the coarse regime is more pronounced
for the aircraft-on-all interaction, because vortex filaments have highly asymmetric moments. This might
also explain why we don’t see large errors for coarse tolerances of the wake-on-all interaction, since the wake
consists of point vortices. The fact that the factor of error corresponds to the same expansion order (as
mentioned two paragraphs ago) also supports this hypothesis.

Of note, the wake-on-all maximum error appears to converge to a single value for tolerances coarser than
10−2, unlike the panels-on-panels and aircraft-on-all interactions which seem to continually grow larger. This
is likely because the wake-on-all interaction satisfies the error tolerance at the worst-case locations with the
smallest allowable expansion order.

To improve the accuracy without sacrificing cost, we increase the expansion order by one as explained in
Section 3.3, which is plotted in blue. This reduces the error factor by about an order of magnitude across
the board in the first regime. The benefit is reduced in the second regime, likely for the same reason that the
error increases there. The cost impact of increasing the expansion order is less than 4% at worst as shown
in Fig. 17.
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(b) panels-on-panels
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(c) aircraft-on-all

Figure 16: Accuracy of the dynamic expansion order selection versus requested error tolerance for wake-on-all, panels-on-panels,
and aircraft-on-all interactions. Leaf size and MAC were auto-tuned.
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Figure 17: The cost of increasing the expansion order by 1 under the dynamic expansion order is less than 4% in all cases.

4.2.7. Optimal Leaf Size and MAC
We verify the auto-tuned leaf size and MAC by comparing to a manual parameter optimization like we

did in Section 4.1.5. In Tables 3-5, we compare the auto-tuned parameters to optimal parameters obtained
by manual grid search, where leaf size was tested in multiples of 5. The MAC was tested in multiples of
0.05 for both the grid search and the auto-tune. For the wake-on-all interaction, the parameters match
exactly. For the panels-on-panels and aircraft-on-all interactions, the auto-tuned cost is within 7% and 4%,
respectively, of the grid search.

Table 3: Auto-tuned parameters for the wake-on-all interaction compared to the optimal parameters obtained by manual grid
search.

leaf size MAC expansion order cost (s)

auto-tuned 20 0.5 15 14.4
optimal 20 0.5 15 14.4

Table 4: Auto-tuned parameters for the panels-on-panels interaction compared to optimal parameters obtained by manual grid
search.

leaf size MAC expansion order cost, seconds

auto-tuned 11 0.4 16 9.4
optimal 20 0.45 18 8.8

Table 5: Auto-tuned parameters for the aircraft-on-all interaction compared to optimal parameters obtained by manual grid
search.

panels leaf size filament leaf size MAC expansion order cost (s)

auto-tuned 12 79 0.45 18 23.1
optimal 20 60 0.45 18 22.4

5. Conclusion

In this work, the fast multipole method (FMM) was generalized for scalar-plus-vector potential, multi-
system, N -body problems in a single FMM call. The Lamb-Helmholtz decomposition was used to reduce
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the number of expansions required from 4 to 2. Error due to using regularized kernels and bodies of nonzero
radius was mitigated by recentering and shrinking/growing each cell based on the radius or regularization
function. A less conservative error estimate was developed for the potential and the norm of its gradient, and
was used to satisfy an error tolerance by choosing the expansion order for each multipole-to-local interaction
dynamically. The leaf size tuning parameter was tuned automatically based on benchmarks of a single FMM
call. This makes it possible to re-tune every timestep of time-evolving N -body systems at no additional cost,
since benchmarks from the previous timestep can be used for tuning the current step. Since both the leaf
size and the expansion order are automatically tuned under this scheme, tuning the multipole acceptance
criterion simplifies to a 1-dimensional root find, which is automated. In other words, all parameters of the
FMM are automatically tuned.

The methods developed were first tested on two canonical examples: randomly placed point sources or
vortices in the unit cube. The error method predicted the maximum error within a factor of 2 in all cases,
and the autotuned parameters resulted in a computational cost within 5% of the optimal parameters found
by manual grid search. The design space of tuning parameters was plotted, showing that order-of-magnitude
cost savings can be obtained by appropriate tuning. Choosing the expansion order dynamically resulted in a
15% reduction in computational over a constant expansion order for a fixed error tolerance of 10−7, though
this cost reduction grew smaller as the error tolerance increased until it vanished at a tolerance of roughly
10−5. When both point sources and point vortices were combined into a single multi-system problem, it was
shown that combining the expansions under the Lamb-Helmholtz decomposition resulted in computational
savings of roughly 25% for any given expansion order and a constant leaf size.

Finally, a passenger electric vertical takeoff and landing aircraft was modeled using a combination of
constant source panels, constant normal dipole panels, regularized vortex filaments, and regularized vortex
particles. Three interactions were considered: wake-on-all, panels-on-panels, and aircraft-on-all, to represent
practical use cases. The maximum error was successfully constrained within an order of magnitude most
of the time, though a factor of 100 was observed for very coarse tolerances. By leveraging data already
available within an FMM call, we were able to increase the expansion order by one for up to an order of
magnitude improvement in accuracy at less than a 4% cost penalty. The auto-tuned parameters matched
the manually found optimal parameters exactly for the wake-on-all interaction. For the panels-on-panels and
aircraft-on-all interactions, the resulting computational cost was within 7% and 4%, respectively.

It is hoped that the methods developed here will reduce the user effort required to leverage FMM in
scientific computing. The FMM code developed for this work was written in the Julia language and is
available open-source on Github8 and the Julia registry.

Appendix A. Error Upper Bound Derivation

Here, we derive Eqs. 26 and 27, which are upper bound predictions for the magnitude of the error in the
vector field v⃗ induced by the scalar-plus-vector potential field under the Lamb-Helmholtz decomposition. In
other words,

v⃗(r⃗) = ∇ϕ̃+∇× (r⃗χ) (A.1)

where ϕ̃ and χ are expanded in the FMM to expansion order p as

ϕ̃(r⃗) =

p−1∑
n=0

n∑
m=−n

ϕ̃mn X
m
n (r⃗) (A.2)

χ(r⃗) =

p−1∑
n=0

n∑
m=−n

χm
n X

m
n (r⃗) (A.3)

8https://github.com/byuflowlab/FastMultipole.jl
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where Xm
n are the irregular solid harmonics for a multipole expansion or the regular solid harmonics for a

local expansion. The multipole (Xm
n = Sm

n ) and local (Xm
n = Rm

n ) vector magnitude truncation error is due
to terms neglected in the infinite series:

|ε⃗X | ≤ ε∇ϕ̃ + ε∇×(r⃗χ) (A.4)

ε∇ϕ̃ =

∣∣∣∣∣
∞∑

n=p

n∑
m=−n

ϕ̃mn ∇Xm
n (r⃗)

∣∣∣∣∣ (A.5)

≈

∣∣∣∣∣
p∑

m=−p

ϕ̃mp ∇Xm
p (r⃗)

∣∣∣∣∣ (A.6)

ε∇×(r⃗χ) =

∣∣∣∣∣
∞∑

n=p

n∑
m=−n

χm
n (∇× r⃗Xm

n (r⃗))

∣∣∣∣∣ (A.7)

≈

∣∣∣∣∣
p∑

m=−p

χm
p

(
∇× r⃗Xm

p (r⃗)
)∣∣∣∣∣ (A.8)

In the next two subsections, we will develop an estimate for ε under local and multipole expansions, respec-
tively. We point out that while these results work equally with or without the Lamb-Helmholtz decomposi-
tion; we need only drop the terms pertaining to the χ potential to remove it.

Appendix A.1. Local Vector Truncation Error
It can be shown that spatial derivatives of the solid harmonics can be expressed in terms of other solid

harmonics, allowing us to eliminate the ∇ operator from Eqs. A.6 and A.8. The derivation is beyond the
scope of this work, but we use Gumerov’s results for a local expansion [6]:

vk =

∞∑
n=0

n∑
m=−n

vmknR
m
n (r⃗) (A.9)

vmxn =
1

2

[
iϕ̃m−1

n+1 + iϕ̃m+1
n+1 + (n−m)χm+1

n − (n+m)χm−1
n

]
(A.10)

vmyn =
1

2

[
ϕ̃m−1
n+1 − ϕ̃

m+1
n+1 + i(n−m)χm+1

n + i(n+m)χm−1
n

]
(A.11)

vmzn = −ϕ̃mn+1 − imχm
n (A.12)

We estimate ε∇ϕ̃ by taking the first neglected term in the truncated expansion. Note that n = p is not the
first neglected term because vmkn involves coefficients of degree n+ 1. Rather,

ε∇ϕ̃,k ≈
p−1∑

m=−p+1

(
vmk,p−1

)
ϕ̃
Rm

p−1(r⃗) (A.13)

≤ L
(ϕ̃)
p

R̃0
p

rp−1

(p− 1)!
(A.14)

ε∇ϕ̃ =
√
ε2∇ϕ̃,x

+ ε2∇ϕ̃,y
+ ε2∇ϕ̃,z

(A.15)

≲
√
3
L(ϕ̃)
p

R̃0
p

rp−1

(p− 1)!
(A.16)

where the superscript (ϕ̃) denotes the coefficients used to compute Lp as per Eq. 24.
We predict the ∇× (r⃗χ) local error as
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εîk·∇×(r⃗χ) ≈
p∑

m=−p

(
vmk,p

)
χ
Rm

p (r⃗) (A.17)

≤ L
(χ)
p

R̃0
p

rp

(p)!
(A.18)

ε∇×(r⃗χ) =
√
ε2∇×(r⃗χ),x + ε2∇×(r⃗χ),y + ε2∇×(r⃗χ),z (A.19)

≲
√
3
L(χ)
p

R̃0
p

rp

(p)!
(A.20)

Substituting Eqs. A.13 and A.17 into Eq. A.4, we obtain

|ε⃗R| ≲
√
3
L(ϕ̃)
p

R̃0
p

rp−1

(p− 1)!
+
√
3
L(χ)
p

R̃0
p

rp

(p)!
(A.21)

which is our estimate of the upper bound of the magnitude of the vector error of a local expansion, and the
second term can be ignored if the Lamb-Helmholtz decomposition is not used.

Appendix A.2. Multipole Vector Truncation Error
For the multipole v⃗ error, we desire an expression like Eq. A.9, but in the Sm

n basis. We begin with
Gumerov’s derivative expressions [6]:

DxS
m
n =

i

2

(
Sm+1
n+1 + Sm−1

n+1

)
(A.22)

DyS
m
n =

1

2

(
Sm+1
n+1 − S

m−1
n+1

)
(A.23)

DzS
m
n = −Sm

n+1 (A.24)

Dr×xS
m
n = −n+m

2
Sm−1
n +

n−m
2

Sm+1
n (A.25)

Dr×yS
m
n = −in+m

2
Sm−1
n − in−m

2
Sm+1
n (A.26)

Dr×zS
m
n = −imSm

n (A.27)

Substituting into Eq. A.3 and reordering indices, we obtain:

vk =

∞∑
n=0

n∑
m=−n

vmknS
m
n (r⃗) (A.28)

vmxn =
i

2

(
ϕ̃m−1
n−1 + ϕ̃m+1

n−1

)
+

(
−n+m+ 1

2
χm+1
n +

n−m+ 1

2
χm−1
n

)
(A.29)

vmyn =
1

2

(
ϕ̃m−1
n−1 − ϕ̃

m+1
n−1

)
+

(
−in+m+ 1

2
χm+1
n − in−m+ 1

2
χm−1
n

)
(A.30)

vmzn = −ϕ̃mn−1 − χm
n im (A.31)

We estimate the ∇ϕ̃ error by taking the first neglected term in the truncated expansion:
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ε∇ϕ̃,k ≈
p∑

m=−p

(
vmk,p

)
ϕ̃
Sm
p (r⃗) (A.32)

≤ M
(ϕ̃)
p

S̃0
p

(p)!

rp+1
(A.33)

ε∇ϕ̃ =
√
ε2∇ϕ̃,x

+ ε2∇ϕ̃,y
+ ε2∇ϕ̃,z

(A.34)

≲
√
3
Mp−1

S̃0
p−1

(p)!

rp+1
(A.35)

We estimate the ∇× (r⃗χ) error as

ε∇×(r⃗χ),k ≈
p∑

m=−p

(
vmk,p

)
χ
Sm
p (r⃗) (A.36)

≤ M
(χ)
p

S̃0
p

(p)!

rp+1
(A.37)

ε∇×(r⃗χ) =
√
ε2∇×(r⃗χ),x + ε2∇×(r⃗χ),y + ε2∇×(r⃗χ),z (A.38)

≲
√
3
M(χ)

p

S̃0
p

p!

rp+1
(A.39)

Substituting Eqs. A.32 and A.36 into Eq. A.4, we obtain

|ε⃗S | ≲
√
3
Mp−1

S̃0
p−1

(p)!

rp+1
+
√
3
M(χ)

p

S̃0
p

p!

rp+1
(A.40)

which is our estimate of the upper bound of the magnitude of the vector error of a multipole expansion,
and the second term can be ignored if the Lamb-Helmholtz decomposition is not used. In summary, we
have arrived at multipole and local expansion error upper bounds for the its induced vector field under the
Lamb-Helmholtz decomposition for scalar-plus-vector potential fields.
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