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Abstract

In this paper we present a continuation optimization method for reducing multi-
modality in the wind farm layout optimization problem that we call Wake Expansion
Continuation (WEC). We achieve the reduction in multi-modality by starting with
an increased wake diameter while maintaining normal velocity deficits at the center
of the wakes, and then reducing the wake diameter for each of a series of optimiza-
tion runs until the accurate wake diameter is used. We applied and demonstrated
the effectiveness of WEC with two different wake models. We tested WEC on four
optimization case studies with a gradient-based optimization method and a gradient-
free optimization method. We found a significant improvement in the mean, standard
deviation, and minimum wake loss for optimization with WEC compared to opti-
mization without WEC for all test cases. We found the gradient-free optimization
algorithm resulted in less optimal layouts on average for all cases than the gradient-
based algorithm with WEC. We also applied WEC to the gradient-free algorithm for
one case study with significantly improved results, but there was more improvement
when we applied WEC to a gradient-based algorithm. WEC enables gradient-based
algorithms to search the wind farm layout optimization space more globally, and pro-
vides more optimal results more consistently than optimization without WEC.

KEYWORDS:
Optimization, wind farm, gradient-based

1 INTRODUCTION

The difficulty of solving thewind farm layout optimization (WFLO) problem is primarily due to the large number of variables and
constraints required for realistic problems and the multi-modal nature of the problem’s design space. Gradient-free optimization
methods are the most common methods used to solve the WFLO problem. However, the performance of gradient-free methods
is reduced in high dimensional problems1. The WFLO problem scales quickly to high dimensions as the number of turbines is
increased. Gradient-based optimization methods are well suited for high dimensional problems, particularly if numerically exact
derivatives are provided. Gradient-based methods are not widely used for WFLO problems because they are highly susceptible
to local optima2. However, due to their relatively low computational cost and their ability to efficiently handle many variables
and constraints, gradient-based methods are gaining interest in the WFLO community have been shown to find good solutions
to WFLO problems3–7.
Many techniques have been presented to make the WFLO problem more tractable, including discretization, multi-start, re-

parameterization, and hybrid approaches. Discretization techniques, used with gradient-free methods, attempt to simplify the
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problem by reducing the number of possible solutions8,9. Through discretization, the number of possible turbine locations
within a wind farm can be reduced from infinite to something on the order of hundreds of locations. However, discretization
disregards any locations that are not pre-selected, and can thus preclude this approach from finding even a local optimum. It
is also possible that constraints on variables other than position may render the discretized optimization problem intractable.
Multi-start approaches involve running many optimizations of one problem with different starting points7,10–12. This approach
reduces the sensitivity of gradient-based optimization methods to local optima. Re-parameterization approaches seek to reduce
the complexity of the problem by defining the wind farm with just a few variables, such as row spacing, column spacing, grid
rotation, etc. and can be very effective if the problem of interest can be properly parameterized13. Hybrid approaches combine
gradient-based and gradient-free algorithms iteratively14–16, and, depending on the problem size, can yield comparable results
to multi-start approaches14. While each of these techniques yield improved results, there is still need for further improvement
because current methods have a wide spread in the quality of results, are highly dependent on starting locations, artificially limit
the design space, and/or cannot be applied in realistic wind farm optimization scenarios. The limitations of the existing methods
indicate a need for better methods that avoid local optima, whether real or imposed by the approach itself.
The fluctuations of wind speed as turbines move in and out of the wakes during optimization are primarily responsible for

the multi-modal nature of the WFLO problem. In this paper we propose a method designed to overcome the problem of local
optima caused by the wakes. We reduce the impact of local optima by widening and combining wake regions without altering
individual wake-center deficits. We then run a series of optimizations with increasingly realistic wake distributions until we get
back to the original model. We will refer to the new method as Wake Expansion Continuation, or WEC.
In the following sections, we will: present an overview of WEC (section 2), introduce the simulation models used to study

WEC (section 3), demonstrate how to apply WEC to existing models (section 4), provide a series of wind farm layout optimiza-
tion case studies for comparing optimization methods (section 5), give some details on the computational environment used in
our studies and discuss how we tuned the various methods for our case studies (section 6), present and discuss the results of the
case studies (section 7), and provide concluding comments (section 8).

2 INTRODUCTION TO THE WAKE EXPANSION CONTINUATION

In Gaussian continuation optimization, the design space is approximated using a series of radial basis functions17. When opti-
mization is performed, the standard deviations of the radial basis functions starts at a relatively high value and slowly decreases
until the original standard deviation is reached. Increasing the standard deviation of the basis functions has the effect of causing
the various basis functions to blend in to each other, effectively removing the local optima and providing a relatively unimodal
design space to the optimization algorithm. Slowly returning the standard deviation to the original value allows the optimization
algorithm to adjust for any shift in the global optimum due to the blending of the basis functions and avoid local optima.
WEC works in a manner similar to Gaussian continuation optimization, except that because wind turbine wakes are roughly

Gaussian-shaped, the Gaussian basis functions are built in to the model directly rather than used to approximate the model.
Other key differences are that the basis functions in WEC are not radial, and that the Gaussian functions in the wind farm model
change location during theWFLO because they are tied to the turbine locations. Because of these last two differences, we cannot
guarantee that WECwill converge to the global optimum. However, we will show that use of theWECmethod does significantly
improve WFLO results. We have also presented a preliminary study showing significant benefit of the WEC method12 and a
study validating WEC optimization results with large eddy simulations (LES)7.
The WEC method can be explained in three basic steps. The first two steps are preparatory, and need only be performed once

for each wake model:

1) Determine how the wake diameter and wake deficit are controlled for the selected wake model.

2) If necessary, introduce a factor to the model such that the wake diameter can be directly controlled without significantly
altering the wake deficit in the center of the wake. If the model already provides such control then this step is not needed.
Wake center is analogous to the mean of a Gaussian distribution. Wake deficit is analogous to the leading coefficient of
a Gaussian distribution. Wake diameter is analogous to the standard deviation of a Gaussian distribution. Keeping the
wake deficit in the center of the wake constant, while changing the wake diameter, mimics the behavior of increasing the
standard deviation without changing the height of a Gaussian distribution as shown by Mobahi and Fisher17.
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3) Run a series of optimizations such that the wake diameter is larger than normal for the first optimization, and then reduces
with each subsequent optimization until the wake diameter is no longer altered from the original model. Each optimization
after the first should be hot-started using the result of the previous optimization.

To apply the wake expansion technique to the wind farm layout optimization problem, we need to determine the best way to
expand the basis functions, or wake diameter in this case. We have investigated three ways of expanding the wake: (1) increasing
the wake spreading angle (WEC-A), (2) multiplying the initial wake diameter (WEC-D), and (3) a hybrid of WEC-A and WEC-
D that uses WEC-A in the near wake and WEC-D in the far wake (WEC-H). The impact on the wake shape of each of these
three methods of expanding the wake are shown in fig. 1.
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FIGURE 1 The impact on wake shape of expanding the wake by increasing the spreading angle (WEC-A), the diameter (WEC-
D), or a downstream diameter that also changes the near wake spreading angle (WEC-H). The relative amount of expansion in
the figure is for convenience in comparing the WEC methods. The actual amount of expansion is variable for all methods.

To test the wake expansion approaches discussed, we implemented each of them in the Bastankhah and Porté-Agel wake
model and compared them in detail. We found that of the wake expansion methods we investigated, the WEC-D method is the
best as it consistently had the lowest minimum, mean, and standard deviation of wake loss. The better performance of WEC-
D over WEC-A and WEC-H can be explained by the fact that both WEC-A and WEC-H alter the wake shape, while WEC-D
only multiplies the standard deviation of the basis functions in a manner consistent with Gaussian continuation optimization
theory (see Mobahi and Fisher17). In the balance of this paper we will refer to WEC-D as WEC because the other variants
are not relevant in the remainder of this discussion. For further details on the other wake expansion methods you can refer to
(J. J. Thomas, Dissertation, Brigham Young University, 2021).

3 SIMULATION MODELS

Because of the general nature of the proposed method, it can be applied to any wake model where the wake center deficit and
wake diameter can be controlled independently. In this study we have applied WEC to the 2016 version of the Bastankhah and
Porté-Agel wake model18, which we will refer to as the Bastankhah model, and the cosine version of the Jensen wake model19,
which we will refer to as the Jensen cosine model. Following our discussion of the wake models we will describe the turbine
and other models that we used for this work.
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3.1 The Bastankhah Wake Model
In the Bastankhah wake model, two primary characteristics of the wakes, wake deficit and wake diameter, are particularly easy
to isolate. This, along with the smoothness and differentiability of the model, make it a good example for demonstrating WEC.
We used the Bastankhah wake model, as defined in eq. (1)18, along with the Niayifar and Porté-Agel wind farm model20.

Δū
ū∞

=

[

1 −

√

1 −
CT cos (
)
8�y�z∕d2

]

exp
(

− 0.5
[Δy − �

�y

]2
)
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(

− 0.5
[z − zℎ

�z

]2
)

, (1)

where Δū∕ū∞ is the normalized wake velocity deficit, CT is the thrust coefficient, 
 is the upstream turbine’s yaw angle with
respect to the inflow direction, Δy − � and z − zℎ are the distances of the point of interest from the wake center perpendicular
to the wind direction in the horizontal and vertical directions respectively. The standard deviation of the wake deficit in the
horizontal direction is defined as

�y = ky[Δx − x0] +
d cos (
)
√

8
, (2)

and the standard deviation of the wake deficit in the vertical directions is defined as

�z = kz[Δx − x0] +
d
√

8
, (3)

where Δx is the downstream distance from the turbine generating the wake to the point of interest, x0 is the length of the wake
potential core, d is the diameter of the turbine generating the wake, and ky and kz are determined as a function of turbulence
intensity (I) as defined in eq. (4)20.

k∗ = 0.3837I + 0.003678 (4)
While the Niayifar and Porté-Agel wind farm model calculates k∗ based on local turbulence intensity at each turbine, the local
turbulence intensity calculations introduce more local optima and discontinuities. For this reason, we chose to ignore local
turbulence intensity while using WEC and re-introduce a smooth version of the local turbulence intensity in a final optimization
step following allWEC steps in studies performed usingWECwith the Bastankhah wakemodel and gradient-based optimization
methods. While local turbulence intensity does impact the accuracy of the power predictions, it does not alter the general trends
within the design space, and most simple wake models ignore local turbulence intensity.
The Gaussian shape of the Bastankhah wake model is well suited for gradient-based optimization because it is smooth, contin-

uous, and has no flat regions. However, in the near wake, the model can either be flat, which can cause premature convergence,
or be undefined, which can cause optimizations to fail. Because no turbines will be placed in this region of the wake in the final
optimized layout, the accuracy of the model in the near wake is second in importance to wake shape and continuity.
We define our near wake model using the location where the original model first begins to be defined, xd , derived by Thomas

et al.7 and reproduced in eq. (5).

xd = x0 + d

[ky + kz cos (
) −
√

[ky + kz cos (
)]2 − 4kykz[CT − 1] cos (
)

2kykz
√

8

]

. (5)

We find the standard deviation of the wake at the point xd as shown in eq. (6).

�yd = ky[xd − x0] + d
cos (
)
√

8
. (6)

We then use the definition of the wake diameter at the point of discontinuity to provide an estimate for the wake diameter and
velocity deficit at the rotor hub. With the assumption that �yd is the value of the wake diameter at the rotor hub, we can define
the slope of the near wake, kyNEAR , as shown in eq. (7).

kyNEAR =
�yo − �yd

x0
. (7)

For more details on near wake approximation of the Bastankhah wake model used in this study, please see7.

3.2 The Jensen Cosine Wake Model
The Jensen cosine wake model is a variant of the popular “top hat" model often referred to as the Jensen model. The cosine
version simply multiplies the top hat shape with a factor that changes the wake deficit shape to follow a cosine curve (see fig. 2b
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for a comparison of the top hat and cosine variants of the Jensen model). We used the Jensen cosine wake model as defined in
eq. (8), along with the Katic wake combination model21

ū
ū∞

= 1 − 2a
[

r0
r0 + �Δx

]2

f� , (8)

where ū represents the wind velocity at a distance Δx downstream of the waking turbine, ū∞ represents the free-stream wind
velocity, r0 represents the radius of the wind turbine, � represents the wake entrainment constant19, and a represents the axial
induction (for which we assumed an ideal value of a = 1∕3). The cosine factor, f� is defined as

f� =
1 + cos (n�)

2
, (9)

where � is the angle from the wake center line to the point of interest measured from the wake vertex (a distance z upstream of
the wind turbine as shown in fig. 2a), and n is a factor derived from the wake spreading angle, �. The value of n can be calculated
as n = �∕�.
We used the same wake spreading angle as Jensen, � = 20◦ 19. A comparison of the velocity deficit profiles for the Jensen top

hat and Jensen cosine wake models is provided in fig. 2b.
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(a) Horizontal geometry of the Jensen cosine wake model. The wind is blowing to the right. The dashed line down the middle represents the center line
of the wake. The large black dot represents any given point of interest.
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(b) Wake deficit profiles at 6 rotor diameters down wind for the Jensen top hat and Jensen
cosine wake models.

FIGURE 2 The Jensen wake models19.

3.3 Turbine Model
We based our turbines on the Vestas V-80 2MW wind turbine for all studies in this paper. The values of CP and CT were based
on a linear interpolation of the power and thrust coefficient curves presented by Niayifar and Porté-Agel20 and shown in figs. 3
and 4. The other turbine specifications are provide in table 1. The CT curve was only used with the Bastankhah wake model.
We used a constant axial induction (a) of 1/3 and set � to 0.1 when using the Jensen cosine wake model.

5



0 5 10 15 20
Wind Speed (m/s)

0.0

0.1

0.2

0.3

0.4

0.5
Po

we
r C

oe
ffi

cie
nt

FIGURE 3CP curve for the Vestas V80 2MWwind turbine20
for a given rotation speed schedule.
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FIGURE 4CT curve for the Vestas V80 2MWwind turbine20
for a given rotation speed schedule.

TABLE 1 Turbine Specifications

Rotor Diameter 80.0 m
Hub Height 70.0 m
Cut-in Speed 4.0 m/s
Cut-out Speed 25.0 m/s
Rated Speed 16.0 m/s
Rated Power 2.0 MW
Generator Efficiency 0.944

3.4 Other Models
We combined the wake deficits using a linear combination method20 with the Bastankhah wake model, and a sum of squares
method21 with the Jensen wake model. We used a reference height of 80 m for all wind speed measurements and adjusted to
different heights with a power law using a wind shear exponent of 0.31 as shown in eq. (10).

u = ur

[

z
zr

] 

, (10)

where ur is the reference wind speed, z is the height of interest, zr is the height at which ur was measured, and  is the shear
exponent.
To save computation time, the inflow wind speed at each turbine was approximated using a single point at the wind turbine

hub location. Individual turbine inflow wind velocities, Ui, were solved consecutively from upstream to downstream for each
wind state (direction and speed combination) for the Bastankhah wake model, but in no particular order for the Jensen cosine
model. The power output of each turbine was then calculated as

Pi =
1
2
�AriCPU

3
i , (11)

where � is the air density, Ar,i is the rotor-swept area of turbine i, and CP is the power coefficient. We calculated annual energy
production (AEP) as

AEP = [24][365]
ns
∑

j=1

nt
∑

i=1
pjPij , (12)

where ns is the number of wind states (direction and speed combination), pj is the probability of a given wind state, nt is the
number of wind turbines, and Pij is the power produced by turbine i given wind state j.
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We maximized AEP as the objective of the optimizations in this paper, but present the results using wake loss because
it provides a convenient baseline for comparison. We calculated wake loss (energy lost due to wake effects) across all the
optimization results as

L = 100
[

1 −
AEP0
AEPt

]

, (13)

where AEP0 represents the optimized AEP found from a given starting layout and AEPt is the theoretical maximum AEP
calculated as shown in eq. (14).

AEPt = [24][365]
ns
∑

j=1
pjPj , (14)

where Pj is the power of a single un-waked wind turbine at wind state j calculated using eq. (11).

4 APPLYING WEC TO THE WAKE MODELS

In this section we apply WEC, step by step as discussed in section 2, to the Bastankhah wake model and the Jensen cosine wake
model. We present how to apply the first two steps of the WEC method to each wake model. The final step of the WEC method
is the same for all models, with the exception that different WEC factors and number of WEC steps may be optimal for different
wake models.

4.1 Applying WEC to the Bastankhah Wake Model
4.1.1 Bastankhah WEC Step (1)
The first parenthetical term of eq. (1) defines the magnitude of the velocity deficit. The exponential terms determine the wake
diameters in the horizontal and vertical directions. The wake diameters and velocity deficit are coupled through �y and �z. How-
ever, because the diameters and deficit are expressed in separate terms, it is possible to adjust the diameters without impacting
the deficit by adjusting the �y and �z values in only the diameter part of the equation.

4.1.2 Bastankhah WEC Step (2)
Independent control of the wake diameter is obtained by introducing a factor, �, to �y and �z in the exponential terms of eq. (1),
as shown in eq. (15). The only change from eq. (1) to eq. (15) is the addition of the WEC factor, �.

Δū
ū∞

=

[

1 −

√

1 −
CT cos (
)
8�y�z∕d2

]

exp
(

− 0.5
[Δy − �
��y

]2
)

exp
(

− 0.5
[z − zℎ
��z

]2
)

(15)

Increasing � widens the wakes without changing the wake center velocity deficit. Widened wakes mix and smooth out the local
optima, as shown in fig. 5.

4.2 Applying WEC to the Jensen Cosine Wake Model
In this section we apply WEC to the Jensen cosine wake model. A diagram displaying the Jensen cosine wake model from an
overhead perspective is shown in fig. 2a. The diagram will give context to the variables and parameters discussed in this section.

4.2.1 Jensen Cosine WEC Step (1)
The cosine factor, f� , in eq. (8) controls the wake diameter for the Jensen cosine wake model. By breaking down the cosine factor
into its constituent parameters, it is possible to adjust the wake diameter without impacting the velocity deficit in the center of
the wake.
As can be seen in eq. (9), f� is a function of �, which represents the angle between the wake’s center line and the downwind

turbine’s location as measured from the wake vertex (a distance z along the wake center line upstream of the wind turbine). This
angle � can be calculated as

� = arctan
( Δy
Δx + z

)

, (16)
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FIGURE 5 The impact of theWEC factor, �, forWEC using the Bastankhah wake model. A simple wind farmwith one movable
turbine and one wind direction is shown from above in fig. 5a. Wind is from the top. Increasing the WEC factor removes the
local optima between the wakes of the two front turbines, as demonstrated in fig. 5b.

where Δx and Δy represent the spacing in the wind direction and perpendicular to the wind direction, respectively, between the
upwind turbine and the location of interest. The variable z represents the distance between the wake’s vertex and the upwind
turbine. By adjusting the value of z, we are able to increase or decrease the wake’s spread. The expression for z based on the
initial wake diameter is

z =
r0

tan(�)
. (17)

4.2.2 Jensen Cosine WEC Step (2)
We can directly adjust the wake diameter without impacting the magnitude of the deficit in the center of the wake by applying
a factor, �, to the rotor radius, r0, in eq. (17), as seen below in eq. (18).

z =
�r0
tan(�)

(18)

Through a series of substitutions we can combine the new vertex distance, eq. (18), with the Jensen cosine wake model to
obtain

ū
ū∞

= 1 − a
[

r0
r0 + �x

]2
[

1 + cos

(

�
�
arctan

(

Δy
Δx + �r0

tan(�)

))]

. (19)

Because we have inserted the WEC factor, �, into eq. (19), we may adjust the wake diameter without changing the velocity
deficit in the center of the wake. Note that this is true because when Δy = 0, the term inside the inverse tangent in eq. (19) goes
to zero, regardless of the value of �. Because this is the only place where the WEC factor is found in eq. (19), the velocity deficit
will be constant with respect to � at the wake center. This behavior is shown in fig. 6, which also shows that local optima can be
smoothed out through WEC for the Jensen cosine model.

5 CASE STUDIES

To demonstrate the effectiveness of WEC on a range of problems, we present three wind farm optimization case studies. The
cases were chosen to represent a range in size, complexity, and difficulty of the optimization problem.
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FIGURE 6 The impact of the WEC factor, �, on the Jensen cosine wake model. A simple wind farm with one movable turbine
and one wind direction is shown from above in fig. 6a. Wind is from the top. Increasing theWEC factor removes the local optima
between the wakes of the two front turbines, as demonstrated in fig. 6b.

5.1 Case 1: 16 Turbines and 20 Wind Directions
We selected case 1 to provide a meaningful problem that would be tractable for nearly any optimization method. We defined a
wind farm with 16 wind turbines and a square boundary with enough space for four rows and columns of wind turbines with a
five rotor diameter spacing between rows and columns (see fig. 7). We used a simple wind rose composed of a double Gaussian
distribution binned into 20 directions and a constant wind speed of 10 m/s in all directions (see fig. 8).

FIGURE 7 Baseline wind farm layout for case 1. The
circles marking turbine locations are to scale, with
diameters equal to the rotor diameter.

N

0.0 %
5.0 %

10.0 %
15.0 %

FIGURE 8 Direction probability wind rose for case
1. This wind rose is composed of a double Gaussian
distribution binned into 20 directions.
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For case 1, the optimization problem was formulated as
maximize

xi,yi
AEP (xi, yi) i = 1...16,

subject to sij ≥ 2d i, j = 1...16, i ≠ j,
xmin ≤ xi ≤ xmax i = 1...16,
ymin ≤ yi ≤ ymax i = 1...16, (20)

where (xi, yi) is the position of each turbine i, si,j represents the separation distance between each pair of turbines i and j, and
xmax∕min and ymax∕min represent the boundaries of the wind farm. This case has a total of 32 variables and 120 constraints.

5.2 Case 2: 38 Turbines and 12 Wind Directions
We created case 2 to be significantly more challenging than case 1 while remaining simple enough to be reasonably simulated
using LES7. We defined a wind farm with 38 turbines and a circular boundary as shown in fig. 9. The circular boundary was
originally chosen to simplify LES simulation. The boundary size allowed for a five-diameter minimum spacing between turbines.
We used the Nantucket wind rose binned into 12 directions with the wind speed for each direction set to 8 m/s as shown in fig. 10.

FIGURE 9 Baseline wind farm layout for cases 2 and
3. The circles marking turbine locations are to scale,
with diameters equal to the rotor diameter.

N

0.0 %
5.0 %

10.0 %
15.0 %

FIGURE 10Directional probability wind rose for case
2. This is the Nantucket wind rose binned into 12 direc-
tions22.

The optimization problem for case 2 was formulated as
maximize

xi,yi
AEP (xi, yi) i = 1...38,

subject to sij ≥ 2d i, j = 1...38 i ≠ j,
[xc − xi]2 + [yc − yi]2 ≤ r2b i = 1...38, (21)

where (xc , yc) is the location of the center of the wind farm, and rb is the radius of the wind farm boundary. Case 2 has a total
of 76 variables and 741 constraints.

5.3 Case 3: 38 Turbines and 36 Wind Directions
Case 3 is the same as case 2 but with more wind directions and different wind speeds in each direction. We used the Nantucket
wind rose binned into 36 directions with the wind speed for each direction determined as the average of all samples in that sector
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as shown in figs. 11 and 12. The optimization problem for case 3 was formulated as shown in eq. (21) with the same number of
variables and constraints.

N

0.0 %

2.0 %

4.0 %

FIGURE 11Directional probability wind rose for case
2. This is the Nantucket wind rose binned into 36 direc-
tions22.

N

0.0 m/s
2.0 m/s

4.0 m/s
6.0 m/s

FIGURE 12 Average speed wind rose for case 2. This
is the Nantucket wind rose binned into 36 directions22

5.4 Case 4: 60 Turbines and 72 Wind Directions
We selected case 4, based on the Princess Amalia Wind Park, to provide a larger and somewhat more realistic problem. The
Amalia wind farm has 60 wind turbines. We used the convex hull of the existing turbine locations to create the boundary fig. 13.
We used wind data binned into 72 wind directions with the wind speed for each direction determined as the average of all
samples in that sector as shown in figs. 14 and 15.
For case 4, the optimization problem was formulated as

maximize
xi,yi

AEP (xi, yi) i = 1...60,

subject to sij ≥ 2d i, j = 1...60, i ≠ j,
bik ≥ 0 i = 1...60, k = 1...14, (22)

where bi,k represents the distance of each turbine i from each boundary k. Case 4 has a total of 120 variables and 2610 constraints.

6 IMPLEMENTATION AND OPTIMIZATION METHODS

We implemented the code for each wake model in Fortran and wrapped it with Python. We set up and solved the optimization
problems in OpenMDAO24 using two optimization algorithms, the gradient-based Sparse Nonlinear OPTimizer (SNOPT)25
and the gradient-free Augmented Lagrangian Particle Swarm Optimizer (ALPSO)26. We used both algorithms were through
pyOptSparse27. We obtained exact gradients for both wake models using algorithmic differentiation provided by Tapenade28.
Other gradients were obtained by hand.
To statistically compare results between the optimization methods, we created 199 pseudo-random starting wind farm layouts

and one planned layout for each case, for a total of 200 different starting layouts for each case (basically a multi-start approach).
Each of the starting layouts had all the turbines inside the wind farm boundary and did not have any turbines spaced less than
one rotor diameter apart. The same sets of starting layouts were used for all optimization methods.
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FIGURE 13 Baseline wind farm layout for case 4 with
60 wind turbines. The circles marking turbine loca-
tions are to scale, with diameters equal to the rotor
diameter.
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1.0 %

2.0 %
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FIGURE 14 Direction probability wind rose for
case 4. The wind rose is comprised of data from
Noorzeewind23. Measurements were taken from July
1, 2005, to June 30, 2006.

N

0.0 m/s

5.0 m/s

10.0 m/s

FIGURE 15 Average speed wind rose for case 4. The
wind rose is comprised of data from Noorzeewind23.
Measurements were taken from July 1, 2005, to June
30, 2006.

In the following subsections we present how we tuned and used SNOPT, ALPSO, and WEC to enable fair comparisons
between the methods.

6.1 SNOPT
Weused two optimizations for each runwith SNOPTwhen using the Bastankhahmodel. The first run did not use local turbulence
intensity; the second one did. We ran SNOPT with different convergence tolerances for each case. We determined tolerances
based on the tolerance required to achieve the majority of the improvement in several test runs without unnecessarily delaying
termination. Convergence tolerances used in each case are presented in table 2.We scaled the objective and constraint derivatives
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for all cases to be between ±1. We formulated the objective function in kWh and then scaled it by 1 × 10−4 for optimization
with SNOPT.

TABLE 2 SNOPT Scaling for Each Case Study

Bastankhah Jensen Cosine

Without Local TI With Local TI

Case 1 1 × 10−2 1 × 10−3

Case 2 9 × 10−3 1 × 10−3 1 × 10−3

Case 3 9 × 10−3 1 × 10−3

Case 4 1 × 10−3 1 × 10−4

6.2 ALPSO
We ran ALPSO using the default parameters provided in pyOptSparse29 with a few exceptions. We set the craziness velocity to
be 1 × 10−2 as this value resulted in increased optimized AEP compared to the default value across all the cases we tested. We
tried adjusting the initial particle velocity, but found no difference in results. ALPSO introduces a new parameter, inner iterations,
that is not found in a typical particle swarm method. The inner iteration parameter controls how many times the unconstrained
problem formulation is run before the Lagrange multipliers and penalty factors (used to enforce the constraints) are updated.
The outer iteration count is then used to represent how many sets of inner iterations are run. As demonstrated in by Jansen and
Perez26, we tested a series of values for inner iteration number and found that the inner iteration count had a large impact on
the end results and convergence rates for all cases tested. We used different inner iteration counts for each case study, but held
the number of function calls relatively constant at about 2 × 104 as all cases appeared converged after this many function calls
regardless of the number of inner iterations. We used a constant population seed of 1.0 while testing inner iteration counts and
a random seed for the final case study results. The number of outer iterations was based on the number of inner iterations and
desired function call cap for each case. We scaled the objective and design variables to be between ±1. All optimization runs
using ALPSO had a population size of 30. The adjusted meta-parameters we used for the various ALPSO runs are shown in
table 3.

TABLE 3 Varied ALPSO Meta-Parameters

Inner Iterations Outer Iterations Function Calls

Case 1 5 134 20130
Case 2 25 28 21030
Case 3 15 45 20280
Case 4 10 68 20430

While it may be noted that each optimization run with ALPSO is similar in population size to running 30 optimizations using
a gradient-based algorithm, we decided to run a full set of 200 optimizations for each test, just as was done for SNOPT. Using
the same number of optimizations for ALPSO as for SNOPT is a benefit to ALPSO in terms of comparison because ALPSO is
already designed to search the space broadly and should not need as many different starts to find a good result. This decision
was to reflect how optimizations are often performed in practice, with many optimizations being run regardless of the algorithm
being used, as well as to simplify comparison. While ALPSO and other population-based algorithms do carry many samples
of the design space concurrently, they are used to inform one another and drive to a single final solution, playing a similar role
as the gradients do in gradient-based optimization. We considered a direct comparison between full optimizations, rather than
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population members, to be more informative in how results would look in practice using each algorithm. This approach also
enabled a direct comparison of function calls and the optimization objective.

6.3 SNOPT+WEC
There are two parameters that need to be tuned forWEC: theWEC factor, and the number of steps. For tuningWEC, we used the
following approach. When the maximum WEC factor value was varied, the number of steps was held at six. When the number
of steps was varied, the maximumWEC factor was held at � = 3. We tested all 200 starting layouts with each parameter set. We
did not adjust the k∗ value in eq. (4) to the local turbulence intensity during optimization, but we did adjusted it for calculating
the results shown. We used Case 2 (discussed in section 5.2) for tuning.
The mean wake loss results for tuning WEC are shown in figs. 16 and 17. Here we see that, on average, WEC results in less

wake loss with a WEC factor of 3 and using 5 or more steps. The lowest standard deviations also occurred when the WEC factor
was 3. We found it best to use at least 4 or 5 steps to achieve a small standard deviation (meaning more consistent results). Based
on these results, we decided to use 6 steps and a maximum � value of three for the case studies.
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FIGURE 16 Mean wake loss results for varying the max-
imum WEC expansion factor while holding the number of
steps constant at six. Each data point represents 200 separate
optimizations with different starting points.
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FIGURE 17 Mean wake loss results for varying the number
of WEC steps while holding the expansion factor constant at
three. Each data point represents 200 separate optimizations
with different starting points.

When optimizing with WEC in the case studies, we adjusted the convergence tolerances because the WEC steps are primarily
for exploring the design space and escaping local optima. The corresponding convergence tolerances and WEC factors used at
each step with SNOPT+WEC are shown in table 4.

TABLE 4 WEC Parameters and Convergence Tolerances

WEC step 1 2 3 4 5 6 Final

WEC Factor (�) 3.0 2.6 2.2 1.8 1.4 1.0 1.0
Local TI No No No No No No Yes
Case 1 1 × 10−2 1 × 10−2 1 × 10−2 1 × 10−2 1 × 10−2 1 × 10−2 1 × 10−3

Cases 2-4 9 × 10−3 9 × 10−3 9 × 10−3 9 × 10−3 9 × 10−3 9 × 10−3 1 × 10−3

6.4 ALPSO+WEC
Because WEC alters the design space, it can be applied with any optimization algorithm. To see if WEC may be helpful for
gradient-free algorithms, we tested the impact of WECwith ALPSO in case 2 (see section 5.2). For this test we used a maximum
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WEC factor of 3 with 6 steps, the same maximum � value and number of steps that we found to be best for using WEC with
SNOPT. The objective and constraints were all scaled to be between±1. We chose to use 25 inner iterations, the number of inner
iterations that was best for ALPSO without WEC for this case. The WEC steps were applied by dividing the outer iterations by
the number of WEC steps plus 1 and rounding up, so each WEC step was run with 5 outer iterations. The WEC steps were run
with no local TI, just as for WEC with SNOPT, and a final 5 outer iterations was run with local TI.
It is likely that there are more optimal settings for using WEC with ALPSO, that may be found by tuning the number of

inner and outer iterations for the changing design spaces at each WEC step. When using WEC with SNOPT, most of the turbine
movement tends to occur during the first WEC step. It seems reasonable then that using more outer iterations in the first WEC
step with ALPSO may lead to better results because the early part of the optimization is when most of the exploration takes
place and the highest WEC factor provides the most reduction in local optima. However, this case was only performed as a basic
test to see if there was any significant benefit for applying WEC while optimizing with ALPSO and so parameter values were
based on what we learned from the preceding tuning studies.

6.5 WEC with the Jensen Cosine Model
As a proof of concept in applying WEC to other wake models, we implemented WEC with the Jensen cosine model using
the same maximum value of � (3) and the same number of WEC steps (6) as found best for use with WEC as applied to the
Bastankhah model in section 6.3. We tested WEC with the Jensen cosine model only on case 2 (38 turbines and 12 directions.
See section 5.2). Further improvements with WEC are likely available if WEC were tuned to this model and case combination.

7 RESULTS AND DISCUSSION

In the WFLO problem, we want low wake loss values, tight distributions, and relatively few function calls. The benefit of low
wake loss is increased efficiency, leading to a reduced cost of energy. Tight distributions indicate that results are more consistent
and less dependent on the starting layout, so we should need fewer optimizations to be confident of having a good wind farm
design. A low number of function calls shows that wind farm design optimization can be done more quickly, more variables
could be tested, and planning costs could be reduced. WEC generally reduces the variance and value of wake loss while keeping
function calls well below the number required for gradient-free optimization. Starting and final wake loss distributions for the
case studies are shown in the box plots of fig. 18.
We can see in fig. 18 that all the optimization methods applied were successful at finding fairly good results, but it is clear

that WEC has a significant impact, reducing the mean, minimum, and standard deviation of the wake loss distributions for
all cases as compared with SNOPT or ALPSO alone, with the exception that ALPSO found the best overall result for case 4.
However, SNOPT+WEC provided the best results on average for all cases. For case 2, the SNOPT+WEC distribution does not
even overlap with the SNOPT distribution.
While most of the distributions are fairly normally distributed, theWEC results for case 1 did have some high outliers. It is also

clear that WEC improved the results of ALPSO on case 2 on average and in finding a better overall solution. The impact of WEC
with ALPSO was less than the impact of WEC with SNOPT. The low outliers in the starting location wake loss distributions
are the designed layouts depicted in figs. 7, 9 and 13.
The convergence history for SNOPT, SNOPT+WEC, and ALPSO for each case study are shown in figs. 19 to 23. The ALPSO

runs all terminated with the same number of function calls because function calls was controlled by the number of inner and
outer iterations (see table 3). The straight lines in the ALPSO histories (from 100 to about 1.5 × 102 in fig. 19) represent the
first outer iteration because we have only plotted ALPSO and ALPSO+WEC points at the completion of each outer iteration.
This pattern is seen in the ALPSO and ALPSO+WEC convergence histories for all of the case studies. We calculated wake loss
values using the wake models without WEC and with local TI, if applicable, in all the convergence history figures. This way
we can see what is happening in the design space we are interested in, rather than the altered design space used to inform the
optimization algorithms. The y-axes in figs. 19 to 23 correspondwith the y-axis in fig. 18, but with bounds adjusted as appropriate
for visualizing the convergence histories of each case study. We chose to use a log scale for function calls because of the large
difference in the number of function calls used for gradient-based methods compared to the number of function calls used for
the gradient-free methods. The median number of function calls differed by one to two orders of magnitude (see tables 5 to 9).
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Case 1
BPA Model
16 Turbines
20 Directions
1% 0.831 GWh

Case 2
BPA Model
38 Turbines
12 Directions
1% 1.898 GWh

Case 3
BPA Model
38 Turbines
36 Directions
1% 0.619 GWh

Case 4
BPA Model
60 Turbines
72 Directions
1% 3.992 GWh

Case 2
Jensen Model
38 Turbines
12 Directions
1% 2.158 GWh

FIGURE 18 Results distributions of all case studies. BPA refers to the Bastankhah Model. Jensen refers to the Jensen cosine
model.
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FIGURE 19 Convergence histories of optimizations for
case 1 (16 turbines and 20 wind directions) using the Bas-
tankhah model. Markers indicate optimized values.

The convergence histories for case 1, shown in fig. 19, illustrate the significant drop in wake loss due to using WEC with
only a small extra cost in function calls compared to SNOPT alone. The same effect can be seen in the other cases as shown
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in figs. 20 to 23. While SNOPT+WEC did terminate in fewer function calls than SNOPT in case 4 (fig. 23), SNOPT+WEC
required more function calls on average than SNOPT alone. There is not a clear pattern for convergence rate between SNOPT
alone and SNOPT+WEC across the case studies. The rate of convergence was much higher for SNOPT than for ALPSO, with
or without WEC, with SNOPT alone nearing convergence within the same number of function calls required for ALPSO to
complete a single outer iteration. The convergence rate is the most noticeable difference between the Bastankhah and Jensen
model results. As can be seen in comparing fig. 20 and fig. 21, SNOPT, with or without WEC, generally converges faster when
using the Jensen model than when using the Bastankhah model. However, the convergence rate of ALPSO appears quite similar
for both the Bastankhah and Jensen models. The difference in convergence rate for the gradient-based algorithm is likely due to
the simpler and smoother nature of the Jensen model compared with the Bastankhah model.
Because WEC allows transitions through, and out of, local optima, the wake loss for cases with WEC applied often remain

at higher levels longer in the convergence histories than without WEC and then drop sharply just before convergence. This is a
feature of the method and demonstrates the effectiveness of WEC at allowing optimization algorithms to escape local optima
by moving through locations that would be relatively poor in the non-WEC design space. The different characteristics in the
convergence paths with and without WEC, for both SNOPT and ALPSO, are very apparent in fig. 20, where both algorithms
with WEC stay higher longer and then drop rapidly below the results of the algorithms without WEC.
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FIGURE 20 Convergence histories of optimizations for
case 2 (38 turbines and 12 wind directions) using the Bas-
tankhah model. Markers indicate optimized values.
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FIGURE 21 Optimization convergence histories for case
2 (38 turbines and 12 wind directions) using the Jensen
model. Markers indicate optimized values.

Cases 3 and 4 (figs. 22 and 23) showed similar trends as cases 1 and 2 (figs. 19 to 21), but with smaller gains in wake loss
for using WEC over not using WEC. Cases 3 and 4 also had wider spreads in the number of function calls required for SNOPT
to converge. There are two likely contributors to this difference. The first is an increase in the number of wind directions and
different wind speeds in each wind direction for cases 3 and 4. The second is that case 4 provides more space for the turbines
in general, resulting in a flatter design space with more similar local optima. The increased wind resource complexity and
flatter design space could both increase the number of function calls required. More benefit may also be available from WEC
on these cases if WEC were tuned specifically to them. Because we tuned only to case 2, we may have missed some potential
improvements available through WEC for cases 1, 3, and 4. However, because wake loss is relative to the energy available, the
actual energy gains for using WEC in case 4 are greater than in any of the other cases except case 2 with Bastankhah. Even
without tuning WEC to these cases specifically, the SNOPT with WEC results are significant, and only slightly overlapped, as
compared to the SNOPT results without WEC (see figs. 18, 22 and 23). Using SNOPT+WEC also resulted in the best average
for case 4 and the best overall and average for case 3, with SNOPT+WEC giving a result nearly equal to the best found by
ALPSO on case 4.
The function call counts for most WEC optimizations were weighted towards the first and last optimizations. We found the

first optimization to typically be responsible for around 20%–30% of the function calls, which makes sense because much of
the turbine movement occurs in the first optimization. The seventh step includes both turbulence intensity (if applicable) and
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FIGURE 22 Convergence histories of optimizations for
case 3 (38 turbines and 36 wind directions) using the Bas-
tankhah model. Markers indicate optimized values.
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FIGURE 23 Convergence histories of optimizations for
case 4 (60 turbines and 72 wind direct ions) using the Bas-
tankhah model. Markers indicate optimized values.

a tighter convergence tolerance, so we saw a significant number of function calls for that step as well (about 20%–50%). The
individual WEC step optimizations used relatively few function calls compared to the individual steps for SNOPT alone due to
warm starting.
We compared wake loss and the number of function calls required for each of the cases discussed previously.We used function

calls as a surrogate for time. We did not report wall time because we did not maintain enough consistency in the computational
resources used for each optimization run (cores, processor types, computational isolation, etc). We also performed a Welch’s
t-test between the SNOPT and SNOPT+WEC wake loss percentage results, as well as between the ALPSO and ALPSO+WEC
wake loss percentage results. The Welch’s t-tests showed p < 0.001 for all cases, indicating a high confidence that the results
are not a product of random chance but rather demonstrate actual improvement in the wake loss due to using WEC. The final
statistical results of optimizations from the 200 starting points for each optimization method on the case studies presented in
section 5 are shown in tables 5 to 9.
While mean and median are both reported for the final wake loss in each case, they were nearly equal for all cases.

SNOPT+WEC resulted in the lowest average wake loss across all cases. The largest difference was for case 2, where
SNOPT+WEC resulted in a reduction inwake loss percentage of 3.058 percentage points comparedwith the results fromSNOPT
alone.
The low average values of wake loss and lower standard deviations of wake loss for SNOPT with WEC, indicate that SNOPT

with WEC is more accurate and reliable than SNOPT or ALPSO alone. This improvement in performance does come at the cost
ofmore function calls than SNOPTwithoutWEC. The increase in function calls when usingWEC is expected becauseWEC runs
seven optimizations to convergence (one for each value of �, and a final optimization to account for local turbulence intensity)
while SNOPT alone runs only two (with and without local turbulence intensity). BecauseWEC results also have smaller standard
deviations than SNOPT alone for all cases and ALPSO for all but one case, and the individual WEC step optimizations use

TABLE 5 Case 1 Results for Bastankhah Model: 16 Turbines, 20 Directions

Function Calls Wake Loss (%)*

Median Low High Median Mean SD Low High p

SNOPT 546 152 3348 11.898 11.882 1.470 8.630 16.988
SNOPT+WEC 618 300 3580 9.169 8.860 0.698 7.346 12.137 < 0.001
ALPSO 20130 20130 20130 10.951 10.940 1.094 7.479 13.523

* For case 1 with Bastankhah, 1% wake loss represents approximately 0.83 GWh
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TABLE 6 Case 2 Results for Bastankhah Model: 38 Turbines, 12 Directions

Function Calls Wake Loss (%)*

Median Low High Median Mean SD Low High p

SNOPT 591 202 2220 16.304 16.338 0.790 14.505 19.102
SNOPT+WEC 2679 814 10696 13.285 13.280 0.341 11.725 14.035 < 0.001
ALPSO 21030 21030 21030 15.076 15.097 0.555 13.658 17.016
ALPSO+WEC 26460 26460 26460 14.097 14.096 0.425 12.532 15.762 < 0.001

* For case 2 with Bastankhah, 1% wake loss represents approximately 1.898 GWh

TABLE 7 Case 2 Results for Jensen Model: 38 Turbines, 12 Directions

Function Calls Wake Loss (%)*

Median Low High Median Mean SD Low High p

SNOPT 197 96 1646 19.167 19.184 0.442 18.077 20.328
SNOPT+WEC 288 216 5988 18.244 18.256 0.216 17.742 18.840 < 0.001
ALPSO 21030 21030 21030 18.811 18.848 0.291 18.069 20.016

* For case 2 with Jensen, 1% wake loss represents approximately 2.158 GWh

TABLE 8 Case 3 Results for Bastankhah Model: 38 Turbines, 36 Directions

Function Calls Wake Loss (%)*

Median Low High Median Mean SD Low High p

SNOPT 2004 514 7764 22.423 22.443 0.362 21.487 24.203
SNOPT+WEC 3762 1584 12368 21.592 21.646 0.287 21.148 22.680 < 0.001
ALPSO 20280 20280 20280 22.062 22.075 0.231 21.510 22.667

* For case 3 with Bastankhah, 1% wake loss represents approximately 0.619 GWh

relatively few function calls due to warm starting, fewer runs would be needed to gain the same level of confidence in the results.
The reduction in overall runs could lead to large overall reductions in the number of function evaluations for design studies
performed with WEC as compared to SNOPT or ALPSO alone, while simultaneously achieving more efficient final wind farm
layouts.
The relatively wide spread and moderate results from SNOPT on most cases demonstrate one of the weaknesses of gradient-

based algorithms.While gradient-based algorithms tend to need fewer function calls, and thus typically less time, they are highly

TABLE 9 Case 4 Results for Bastankhah Model: 60 Turbines, 72 Directions

Function Calls Wake Loss (%)*

Median Low High Median Mean SD Low High p

SNOPT 2714 560 16640 9.033 9.043 0.180 8.625 9.445
SNOPT+WEC 471 276 1410 8.539 8.551 0.118 8.260 8.830 < 0.001
ALPSO 20430 20430 20430 8.632 8.647 0.185 8.183 9.314

* For case 4 with Bastankhah, 1% wake loss represents approximately 3.992 GWh
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susceptible to local optima. WEC was designed to help alleviate the problem of local optima in the WFLO problem. That WEC
wake loss results, on average, were lower and less spread for all test cases, as compared with SNOPT and ALPSO, seems to
indicate that WEC is at least partially overcoming the problem of local optima and providing significant benefits over the other
optimization methods.

8 CONCLUSION

The wake expansion continuation (WEC) method we proposed in this paper uses inherent characteristics of typical wake models
to reduce the multi-modal nature of the wind farm layout optimization (WFLO) design space.WEC can help gradient-based opti-
mization algorithms solve the global WFLO problem and also improve the results of gradient-free algorithms. We tested WEC
with two wake models, two optimization algorithms (one gradient-based and one gradient-free) and four WFLO problems, one
with 16 turbines and 20 wind directions, one with 38 turbines and 12 wind directions, one with 38 turbines and 36 wind direc-
tions, and one with 60 turbines and 72 wind directions. We found a statistically significant reduction (p < 0.001) in optimized
wake loss using WEC compared to optimization without WEC for all test cases. We found that WEC reduced the average, min-
imum, and standard deviation of the wake loss for all cases. We found more improvement using WEC with the gradient-based
optimization algorithm than with the gradient-free algorithm. While we still recommend using multiple optimization runs when
using WEC, because of the lower standard deviation fewer runs should be needed to get results at least as good as those without
WEC. Alternatively, because of the improved average, you can expect better results if you use the same number of runs.
Future work should investigate potential improvements and best practices for WEC to reduce the number of function calls

required, provide a more complete comparison to gradient-free wind farm layout optimization including discrete parameteriza-
tion. It may also be advantageous to consider using WEC with multiple wake models in series because of the rapid convergence
of WEC with the simple Jensen cosine model. In such a study WEC with a gradient-based optimization algorithm would take
the place of the gradient-free algorithm in previously studied hybrid gradient-free then gradient-based optimization studies.
Studies investigating larger and more complex cases, with both general and specific WEC tuning along with more wake models,
would also be informative. While similar methods have been applied on other applications through the use of surrogate models
composed of Gaussian-basis functions, future work should also consider various other applications where the WEC approach
of directly altering the underlying equations could be applied.
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