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Let’s consider the simplest case of an ODE-constrained optimization prob-
lem. We will assume an explicit ODE of the form:

ẏ = f(y, θ, t) (1)

where y is the state, θ are the model parameters, and t is time. We will express
this as a residual:

r(y, ẏ, θ, t) = ẏ − f(y, θ, t) = 0 (2)

which could easily generalize to the implicit case.
Our objective, or loss function, we will assume is a function of just the

final state: L(yf ), which would be the natural choice in a neural ODE context,
but in a more general problem L can be a function of all states and even the
parameters. We will also assume that our initial condition is a fixed constant:
y(ti) = y0 In the general case it could be a (explicit or implicit) function of the
parameters. In summary:

min
θ

L(yf )

s.t. ẏ − f(y, θ, t) = 0

with y(ti) = y0

(3)

We want the total derivative dL/dθ. We can form a Lagrangian, which
needs to be an integral in this case since we are treating it as a continuous time
problem:

L = L(yf ) +

∫ tf

ti

λ(t)(ẏ − f(y, θ, t))dt (4)

Our “constraints” are always satisfied in this case, by design, so the second
term is always zero. That means that dL/dθ = dL/dθ, and it also means we
have a degree of freedom in choosing λ(θ). So, in effect we’ve just added some
clever term, that hasn’t actually changed the value of our loss function. The
goal will be to choose λ to eliminate any dependence on total derivatives (hard
to compute) leaving only partial derivatives (easy), somewhat analogous to the
steady adjoint case.

Let’s take derivatives of the Lagrangian then, since that will be equivalent
to the derivative we are after:

dL

dθ
=

dL
dθ

=
dL

dyf

dyf
dθ

+

∫ tf

ti

λ(t)

[
dẏ

dθ
− ∂f

∂y

dy

dθ
− ∂f

∂θ

]
dt (5)
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We want to express the dẏ/dθ term in terms of dy/dθ so we can consolidate.
We’ll remove it through integration by parts. Let’s examine just that term. We
will first pull out the time derivative to make it clearer how we are integrating
by parts: ∫ tf

ti

λ(t)
dẏ

dθ
dt =

∫ tf

ti

λ(t)
d

dt

(
dy

dθ

)
dt (6)

= λ(t)
dy

dθ

∣∣∣∣tf
ti

−
∫ tf

ti

dy

dθ
λ̇dt (7)

We now substitute that in (while expanding the first term):

dL

dθ
=

dL

dyf

dyf
dθ

+ λ(tf )
dyf
dθ

−
�

���
λ(ti)

dyi
dθ

−
∫ tf

ti

dy

dθ
λ̇− λ(t)

[
∂f

∂y

dy

dθ
+

∂f

∂θ

]
dt (8)

Notice that we can eliminate the derivative of the initial condition, since it is
constant in our formulation. Under the integral we will group the terms that
depend on dy/dθ. That is a total derivative we want to eliminate. We also
group the first two terms, which have a total derivative as well.

dL

dθ
=

(
dL

dyf
+ λ(tf )

)
dyf
dθ

−
∫ tf

ti

dy

dθ

[
λ̇+ λ

∂f

∂y

]
+ λ

∂f

∂θ
dt (9)

Since we free to choose λ we are going to choose it so that all of our terms with
total derivatives are eliminated. That means we want the term in brackets to
be zero. Thus, we need to solve λ such that:

λ̇+ λ
∂f

∂y
= 0 (10)

We also choose λ(tf ) such that first term goes to zero, which eliminates the
other problematic total derivative. In other words:

λ(tf ) = − dL

dyf
(11)

(generally a very simple derivative). What remains is:

dL

dθ
= −

∫ tf

ti

λ
∂f

∂θ
dt (12)

So the procedure is to solve the original ODE ẏ = f(y, θ, t) normally (forward
pass to obtain y), then we solve the following ODE backwards from tf to ti for
λ:

λ̇ = −λ
∂f

∂y
(13)

where the “initial condition” is given in eq. (11). Now that we have λ we simply
integrate eq. (12) to obtain our desired total derivatives. Note that the desired
total derivative depends only on partial derivatives (∂f/∂y and ∂f/∂θ) which
are easy to compute.
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