
Assignment #3: Computing Derivatives ME 575
due 2/24/2021 before midnight via Learning Suite 50 possible points

Overview: We are going to optimize the same 10-bar truss problem you saw in homework 1. However,
this time we will focus on providing derivatives to the optimizer. Our goal is to use various approaches for
numerically computing derivatives, understand their advantageous and disadvantageous, and apply these
methods in an optimization problem to better understand the impact of accurate gradients. The truss
problem is described in C.2.2 of the book and the code is available in the repository: https://github.com/
mdobook/resources

3.1 Truss Derivatives

Before we can optimize the truss we need to provide the following derivatives:

• The derivatives of mass (objective) with respect to cross-sectional areas (design vars), dm/dAi,
for i = 1, ..., nx.

• The derivatives of stress (constraints) with respect to cross-sectional areas (design vars), dσi/dAj ,
for i = 1, ..., ng and j = 1, ..., nx. In other words, this is an ng x nx matrix (and in this case
ng = nx).

You will likely need to make some minor adjustments to accommodate complex step and AD, and
certainly will need to make modifications for the implicit analytic method. Compute the derivatives
of the objective (mass) and the constraints (stresses) using three of the following four methods:

(a) A finite-difference formula of your choice.

(b) The complex-step derivative method.

(c) Algorithmic differentiation.

(d) The implicit analytic method.

Report the relative errors of the various methods. Results will differ somewhat depending on your
evaluation point. Discuss your findings and the relative merits of the approaches.

3.2 Truss Optimization

With the provided gradients you can now optimize the truss. The problem is identical to homework
1, except this time you will supply the derivatives. Solve this optimization problem using one of the
exact derivative methods (not finite differencing). Report the following:

(a) a convergence plot. Plot the number of function calls on the x-axis and the norm of the Lagrangian
on the y-axis (first order optimality condition for a constrained problem). If your solver doesn’t
provide that info, some other relevant convergence metric is fine.

(b) the number of function calls to the truss function required to converge. Side note: one starting
point can be misleading so these kinds of results are more useful if you use multiple starting points
and average (or other statistics) but that isn’t required for this assignment.

Discuss your findings.

Tips

• Your overall constraint derivative matrix will be non-square and so you will know immediately if it
is in the correct orientation or not. However, it is made up of two square matrices and so it easy to
accidentally put those square matrices in backwards (i.e., the transpose of what it should be).
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• Most optimizers have a helpful option to check your user-supplied derivatives (usually against an
internal finite differencing). In this case, it’s not so much a question of the correctness of your gradients,
because you have likely already established that by comparing them using the separate methods, but
it is more a question of whether or not you are supplying them to the optimizer in the requested
format/order.

• Suggested AD tools (this is to suggest they are necessarily the best, just that I’ve tested them for this
problem).

– Matlab: AutoDiff R2016b (download as “toolbox”). The documentation is ok, but not that
detailed. Two things that may help: 1) Use amatinit to convert your design variables to dual
numbers, 2) The function ajac will allow you to extract the Jacobian from an output (e.g., J =

ajac(x, 0)).

– Python: AlgoPy

– Julia: ForwardDiff

• As discussed in class, for both complex step and AD small changes are sometimes needed. These are
sometimes a bit tricky to resolve without some experience so here is some guidance.

– Complex step.

∗ Matlab: compare transpose with complex conjugate transpose.

∗ Python: You’ll need to initialize the numpy K and S matrices with complex types (see dtype).

∗ Julia: no changes needed

– AD.

∗ Matlab: You’ll get an error when adding items to the stiffness matrix (K). The problem
is that K was initialized with floats and Ksub with dual number types so when you add
them together you get a dual number type but you can’t store that back into K since it is
expecting floats. To initialize K properly the easiest thing to do is just to multiply it by an
element in A when it is initialized. That way if A is a float K will initialize with floats, and
if A contains dual numbers then K will initialize with dual numbers. In other words: K =

A(1)*zeros(...).

∗ Python: Python can be a difficult language to perform AD in directly. So unfortunately a
lot of changes are required in this case. 1) like complex step you’ll need to initialize K for a
dual type, see the first warning in the algopy docs, 2) the indexing and deletion operations
don’t work so we’ll have to manually index. Change K[np.ix (idx, idx)] += Ksub to
for j in range(4):

for k in range(4):

K[idx[j], idx[k]] += Ksub[j, k]

3) Change K = np.delete(K, remove, axis=0); K = np.delete(K, remove, axis=1) to
K = K[:8, :8]. 4) Finally, you’ll have to use algopy’s version of solve and dot

∗ Julia: Similar initialization need as Matlab, you can use the same trick (though that’s not
necessarily the best way).

2

https://www.mathworks.com/matlabcentral/fileexchange/61849-autodiff_r2016b
https://pythonhosted.org/algopy/
https://github.com/JuliaDiff/ForwardDiff.jl
https://www.mathworks.com/help/matlab/ref/transpose.html
https://www.mathworks.com/help/matlab/ref/ctranspose.html

