Wind Turbines and Propellers

Lecture 31-32

ME EN 412
Andrew Ning aning@byu.edu

Outline

Momentum Theory

Blade Element Theory

Momentum Theory

Momentum Theory

mass balance:
momentum balance:
combine:

It may not be obvious, that the pressure terms from the sides cancel (they do). We can come up with the same result more rigorously, with the below control volume.

Use a second control volume just across the disk (2-3)

Recall $V_{2}=V_{3}=V_{d}$
and $A_{2}=A_{3}=A_{d}$
momentum balance:

Control Volume 1:

$$
T=\rho A_{2} V_{2}\left(V_{1}-V_{4}\right)
$$

Control Volume 2:

$$
T=A_{2}\left(P_{2}-P_{3}\right)
$$

Combine:

$$
\rho V_{2}\left(V_{1}-V_{4}\right)=\left(P_{2}-P_{3}\right)
$$

We can find the pressure change from Bernoulli's 1-2:
$3-4:$

Combine:

Replace pressure in previous thrust expression:

$$
\begin{aligned}
\rho V_{d}\left(V_{1}-V_{4}\right) & =\left(P_{2}-P_{3}\right) \\
\rho V_{d}\left(V_{1}-V_{4}\right) & =\frac{1}{2} \rho\left(V_{1}^{2}-V_{4}^{2}\right) \\
V_{d}\left(V_{1}-V_{4}\right) & =\frac{1}{2}\left(V_{1}-V_{4}\right)\left(V_{1}+V_{4}\right) \\
V_{d} & =\frac{1}{2}\left(V_{1}+V_{4}\right)
\end{aligned}
$$

Thus, the velocity at the disk is half way between the upstream and downstream velocity.

Recalling the importance of nondimensional numbers:

$$
\begin{aligned}
V_{d} & =V_{\infty}-u \\
& =V_{\infty}\left(1-\frac{u}{V_{\infty}}\right) \\
& =V_{\infty}(1-a)
\end{aligned}
$$

Similarly, we know:

$$
V_{w}=V_{\infty}(1-2 a)
$$

Thrust:

Thrust Coefficient:

$$
\begin{aligned}
C_{T} & =\frac{T}{\frac{1}{2} \rho V_{\infty}^{2} A_{d}} \\
& =4 a(1-a)
\end{aligned}
$$

Angular Momentum Balance

$$
\int_{S}(\vec{r} \times \vec{V}) \dot{m}=\sum \vec{Q}
$$

Velocity triangle*:

*This is an unconventional frame of reference and orientation for a wind turbine, but I use it because it will be more familiar to you as it matches the style of the book.

Apply angular momentum balance:

mass flow rate:

Torque:

Torque Coefficient:

$$
\begin{aligned}
C_{Q} & =\frac{Q}{\frac{1}{2} \rho V_{\infty}^{2} A_{d} r} \\
& =4 a^{\prime}(1-a) \lambda_{r}
\end{aligned}
$$

where $\lambda_{r}=\left(\Omega r / U_{\infty}\right)$ is called the tip speed ratio

Momentum Theory:

$$
\begin{aligned}
& C_{T}=4 a(1-a) \\
& C_{Q}=4 a^{\prime}(1-a) \lambda_{r}
\end{aligned}
$$

Blade Element Theory

Velocity triangle at the blade, in the reference frame of the blade:

angle of attack:
lift and drag coefficients:
normal and tangential force coefficients:

elemental thrust:

elemental torque:

thrust coefficient:

torque coefficient:

find W from velocity triangle:

Local solidity:

$$
\sigma^{\prime}=\frac{B c}{2 \pi r}
$$

Local tip-speed ratio:

$$
\lambda_{r}=\frac{\Omega r}{U_{\infty}}
$$

Momentum Theory:

$$
\begin{aligned}
C_{T} & =\left(\frac{1-a}{\sin \phi}\right)^{2} c_{n} \sigma^{\prime} \\
C_{Q} & =\left(\frac{1+a^{\prime}}{\cos \phi}\right)^{2} c_{t} \sigma^{\prime} \lambda_{r}^{2}
\end{aligned}
$$

If we equate these two theories we can solve for the unknown induction factors

$$
\begin{aligned}
a & =\frac{\sigma^{\prime} c_{n}}{4 \sin ^{2} \phi+\sigma^{\prime} c_{n}} \\
a^{\prime} & =\frac{\sigma^{\prime} c_{t}}{4 \sin \phi \cos \phi-\sigma^{\prime} c_{t}}
\end{aligned}
$$

Problem: ϕ depends on a and a^{\prime}

Conventional Solution: Fixed point iteration, or a 2D root solve.

New Problem: does not always converge.

Better Solution*: Change variables to ϕ and W :

$$
\mathcal{R}(\phi)=\frac{\sin \phi}{1-a(\phi)}-\frac{\cos \phi}{\lambda_{r}\left(1+a^{\prime}(\phi)\right)}=0
$$

* Ning, A., "A Simple Solution Method for the Blade Element Momentum Equations with Guaranteed Convergence," Wind Energy, Vol. 17, No. 9, Sep. 2014, pp. 1327-1345, doi:10.1002/we. 1636.

Algorithm	Avg. Function Calls	Failure Rate (\%)
Fixed-Point	31.8	12.6
Newton	79.0	5.8
Steffensen	16.4	16.3
Powell Hybrid	72.3	16.2
Levenberg-Marquardt	92.3	8.8
New Method	11.3	0.0

