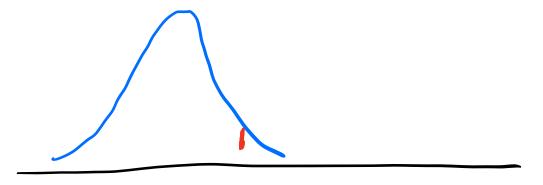

Hypothesis Tests (two samples)


ME EN 275 Andrew Ning aning@byu.edu

Motivation

I introduce a new process that appears to improves yield from 80.5 to 88.6. Is this a significant change or random variation?

My bicycle frame is subjected to a max load of 100.0 and its strength is 110.0. How likely is it to fail?

Recall: confidence interval for difference between two means

$$(x-5) + z_c \sqrt{\frac{s_x^2}{n_x} + \frac{s_y^2}{n_y}}$$

Hypothesis test on difference between two means

$$\mu_{x} - \mu_{y} = \Delta$$

difference is normally distributd with

mean =
$$\Delta$$

5.d. = $\sqrt{\frac{S_x^2}{N_x} + \frac{S_y^2}{N_y}}$

Example

diameter of inclusions of two types of welds

using argon	using CO2
544 welds	581 welds
$\bar{x} = 0.37$	$\bar{y} = 0.4$
$s_x = 0.25$	$s_y = 0.26$

Is the difference in means significant?

$$\sqrt{-y} = -0.03$$

$$\sqrt{-525^2 + .26^2} = 0.0152$$

$$-0.03$$

$$-0.03$$

$$0$$

$$2*Nom.(df(-0.03, 0, 0.0152) = 0.0485$$

Ha Mx - My 70

H: Mx-My =0

95% confidence bound for difference (argon - co2)?

Can we conclude that the mean diameter for carbon dioxide welds (μ_y) exceeds that for argon welds (μ_x) by more than 0.015 μ m?

Example

items identified on website

structured design	conventional design				
10 users	10 users				
$\bar{x} = 44.1$	$\bar{y} = 32.3$				
$s_x = 10.09$	$s_y = 8.56$				

Is the difference in means significant?

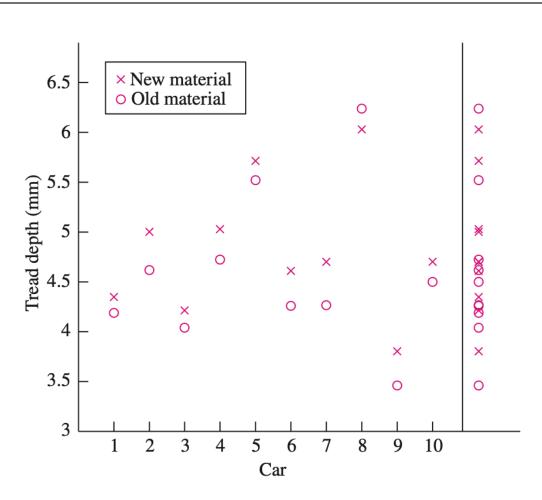
95% lower bound on difference

Reliability

Example

buckling of bicycle component in axial compression

strength	load
I 6 samples	16 samples
$\bar{x} = 2250$	$\bar{y} = 2000$
$s_x = 200$	$s_y = 800$


probability of failure?

$$X: Strength$$
 $J: local.$
 $X - Hy$
 $X - J = 250$
 $X - J = 250$

Paired Data

A tire manufacturer wishes to compare the tread wear of tires made of a new material with that of tires made of a conventional material. One tire of each type is placed on each front wheel of each of 10 front-wheel-drive automobiles. The choice as to which type of tire goes on the right wheel and which goes on the left is made with the flip of a coin.

Title Text

TABLE 7.1 Depths of tread, in mm, for tires made of new and old material

	Car									
	1	2	3	4	5	6	7	8	9	10
New material	4.35	5.00	4.21	5.03			4.70	6.03	3.80	4.70
Old material Difference	4.19 0.16	4.62 0.38	4.04 0.17	4.72 0.31	5.52 0.19	4.26 0.35	4.27 0.43	6.24 -0.21	3.46 0.34	4.50 0.20
	0.10	0.50	0.17	0.51	0.17	0.55	0.15	0.21	0.5 1	0.20

$$x = 0.232$$
 $x = 0.232$
 $y = 0.183$
 $y = 0.183$

0.232 - 1.83(0.183)

$$H_{s:} \quad \mu_{p} \leq 0 \qquad H_{a:} \quad \mu_{p} > 0$$

$$1 - t.cdf(0.232, 9, 0, \frac{0.183}{575})$$

$$P = 0.0015$$

Recapit Conf. Int. and Hyp. Testaly or 2 sample grops. 1 sample group mean: X - J mean: X stdeu. $\sqrt{\frac{5x^2}{N_x} + \frac{5y^2}{Ny}}$ st deu: Cost. and. or hyp. test. Mad M M ± その i-tend => cdf MINCOLO 1- Sided 2 -sides

\sided

2-558ed

Allelle

large n = 30

small

n < 30

df = n-1

ctt=(nx-1)+(ny-1)

t-lotab-1th

 $S_{x} = \left[\frac{S(x; -x)}{S(x; -x)}\right]$ $S_{x} = \left[\frac{S(x; -x)}{S(x; -x)}\right]$

independent or paire J